Подпишись и читай
самые интересные
статьи первым!

Звуковые волны и их характеристики. Звуковые волны вокруг нас

Прежде чем понять, какие источники звука бывают, задумайтесь, что такое звук? Мы знаем, что свет это излучение. Отражаясь от предметов, это излучение попадает к нам в глаза, и мы можем его видеть. Вкус и запах это маленькие частички тел, которые воспринимают наши соответствующие рецепторы. А звук это что за зверь?

Звуки передаются по воздуху

Вы наверняка видели, как играют на гитаре. Возможно, вы и сами умеете это делать. Важно другое звук в гитаре издают струны, если их дернуть. Все верно. А вот если бы вы могли поместить гитару в вакуум и дернуть струны, то вы бы очень удивились никакого звука гитара не издала бы.

Такие опыты проводились с самыми различными телами, и всегда результат был один никакого звука в безвоздушном пространстве не было слышно. Отсюда следует логичный вывод звук передается по воздуху. Следовательно, звук это нечто, происходящее с частицами веществ воздуха и издающих звук тел.

Источники звука - колеблющиеся тела

Далее. В результате самых разнообразных многочисленных экспериментов удалось установить, что звук возникает вследствие колебания тел. Источниками звука являются тела, которые колеблются. Эти колебания передаются молекулами воздуха и наше ухо, воспринимая эти колебания, интерпретирует их в понятные нам ощущения звука.

Проверить это не сложно. Возьмите стеклянный или хрустальный бокал и поставьте его на стол. Легонько стукните по нему металлической ложечкой. Вы услышите длинный тонкий звук. Теперь дотроньтесь рукой до бокала и стукните еще раз. Звук изменится и станет намного короче.

А теперь пусть несколько человек обхватят руками бокал максимально полностью, вместе с ножкой, стараясь не оставить ни одного свободного участка, кроме совсем маленького места для удара ложечкой. Вновь ударьте по бокалу. Вы почти не услышите никакого звука, а тот, что будет - получится слабым и очень коротким. О чем это говорит?

В первом случае после удара бокал свободно колебался, его колебания передавались по воздуху и достигали наших ушей. Во втором случае большая часть колебаний поглощалась нашей рукой, и звук стал гораздо короче, так как уменьшились колебания тела. В третьем случае практически все колебания тела моментально поглотились руками всех участников и тело почти не колебалось, а следовательно, звука почти не издавало.

То же самое касается всех иных экспериментов, которые вы можете придумать и провести. Колебания тел, передаваясь молекулам воздуха, будут восприниматься нашими ушами, и интерпретироваться мозгом.

Звуковые колебания разной частоты

Итак, звук это колебания. Источники звука передают звуковые колебания по воздуху к нам. Почему же тогда мы слышим далеко не все колебания всех предметов? А потому что колебания бывают разной частоты.

Воспринимаемый человеческим ухом звук это звуковые колебания частотой примерно от 16 Гц до 20 кГц. Дети слышат звуки более высоких частот, чем взрослые, а диапазоны восприятия различных живых существ вообще различаются очень сильно.

Уши очень тонкий и нежный инструмент, подаренный нам природой, поэтому следует беречь его, так как замены и аналога в человеческом теле не существует.

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Интегрированный урок физики, музыки и информатики.

Цель урока:

Познакомить учащихся с понятием "звук", характеристиками звука; научмит различать звуки по громкости, тембру, показать, как эти характеристики связаны с частотой и амплитудой колебаний; показать связь физики с музыкой.

Цель

Скачать:


Предварительный просмотр:

9 класс. Урок 36

Источники звука. Звуковые колебания. Решение задач.

Цель урока: Познакомить учащихся с понятием «звук», характеристиками звука; научить различать звуки по громкости, тону, тембру; показать, как эти характеристики связаны с частотой и амплитудой колебаний; показать связь физики с музыкой.

Ход урока.

  1. Организационный момент.
  2. Актуализация знаний.

Слайд 1

  • Фронтальный опрос

1. Что такое механические волны?

2. Каких двух видов бывают механические волны?

3. Что такое период, частота, длина волны, скорость волны? Какая связь между ними существует?

  • Самостоятельная работа.

3. Изучение нового материала.

Учитель. На прошлых занятиях мы начали изучать механические волны, чтобы в дальнейшем познакомиться с электромагнитными волнами. Хотя они имеют разные названия, различную физическую природу, но описываются одними и теми же параметрами и уравнениями. Сегодня мы познакомимся с еще одним видом механических волн. Их название вы запишете после того, как решите логическую задачу (метод решения таких задач называется «мозговым штурмом»).

У англичан есть сказка: «Черт поймал трех путников и согласился отпустить их, если они зададут ему невыполнимую задачу. Один попросил сделать растущее дерево золотым, другой – заставить реку потечь вспять. Черт шутя, справился с этим и забрал себе души обоих путников. Остался третий путник...» Ребята, поставьте себя на место этого путника и предложите черту невыполнимую задачу. (Предлагаются разные версии.) «...А третий свистнул и сказал: “Пришей к этому пуговицу!” – и черт был посрамлен».

Что же такое свист?

Учащиеся. Звук.

Слайд 2 (тема урока)

Слайд 3

Мир звуков так многообразен,
Богат, красив, разнообразен,
Но всех нас мучает вопрос

Откуда звуки возникают,
Что слух наш всюду услаждают?
Пора задуматься всерьез.

1. Природа звука. Условия, необходимые для существования звука

Учитель. Мы живем в мире звуков, которые позволяют нам получать информацию о том, что происходит вокруг.

Пытаются шептать клочки афиш,
Пытается кричать железо крыш,
И в трубах петь пытается вода,
И так мычат бессильно провода...

К.Я.Ваншенкин.

Что представляет собой звук? Как его можно получить? На все эти вопросы отвечает физика.

Слайд 4

Что такое акустика.

Акустика – это раздел физики, занимающийся изучением звука, его свойствами, звуковыми явлениями.

Звуковые волны переносят энергию, которая, как и другие виды энергии, может использоваться человеком. Но главное – это огромный диапазон выразительных средств, которыми обладают речь и музыка. Еще с древних времен звуки служили людям средством связи и общения друг с другом, средством познания мира и овладения тайнами природы. Звуки – наши неизменные спутники. Они по-разному действуют на человека: радуют и раздражают, умиротворяют и придают силы, ласкают слух и пугают своей неожиданностью. (Включается грамзапись «Ростовских звонов».)

Прозвучали знаменитые звоны четырехарочной звонницы, сооруженной в 1682–1687 гг. в городе Ростове Великом, городе славы прошлого. Ростовские звоны исполняются пятью звонарями, причем язык самого большого колокола «Сысоя» раскачивают два человека. Тринадцать колоколов расположены в ряд. Звонари становятся так, чтобы видеть друг друга и соглашаться в такте.

С глубокой древности колокольный звон сопутствовал жизни народа. Своими звонами издавна славились Великий Новгород, Псков, Москва, но такого «оркестра», как в Ростове, не было нигде. Что же является причиной звука?

Слайд 5

Причина звука? - вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

Источники звука - колеблющиеся тела.

Однако не все колеблющиеся тела являются источниками звука. Убедимся в этом.

Опыт 1. «День непослушания».

«Так делать нельзя! Не щелкай линейкой! Сейчас сломаешь линейку – чем на математике будешь отрезки измерять?» Как часто мы это слышали в школе! Но сейчас у нас будет день непослушания. В этом опыте не просто разрешено – нужно щелкать линейкой о край стола. Ведь в этом тоже физика!

Материалы: линейка, стол.

Последовательность действий.

Положи линейку на стол так, чтобы половина её свешивалась с края стола. Тот конец, который лежит на столе, крепко прижми рукой, зафиксировав на месте. Другой рукой приподними свободный конец линейки (только не очень сильно, чтобы не сломать) и отпусти. Прислушайся к получившемуся гудящему звуку.

Теперь немного продвинь линейку, так, чтобы уменьшить длину свешивающейся части. Опять согни и отпусти линейку. Какой получился звук? Такой ли он, как в прошлый раз?

Научное объяснение.

Как вы, наверное, уже догадались, гудящий звук производит вибрация той части линейки, которая свешивается за край стола. Та часть, которая прижата к столу, не может вибрировать и поэтому не издает звуков вообще. Чем короче вибрирующий конец линейки, тем более высокий звук получается, чем длиннее – тем ниже звук.

Слайд 6

Звук – это механические упругие волны , аспространяющиеся в газах, жидкостях, твердых телах.

Волны, которые вызывают ощущение звука, с частотой от 16 Гц до 20 000 Гц

называют звуковыми волнами (в основном - продольные).

Слайд 7

Распространение звука можно сравнить с распространением волны в воде. Только роль брошенного в воду камня играет колеблющееся тело, а вместо поверхности воды звуковые волны распространяются в воздухе. Каждое колебание ветви камертона создает в воздухе одно сгущение и одно разряжение. Чередование таких сгущений и разряжений и есть звуковая волна.

Слайд 8

Чтобы услышать звук, необходимы:

1. источник звука;

2. упругая среда между ним и ухом;

3. определенный диапазон частот колебаний источника звука – между 16 Гц и 20 кГц,

4. достаточная для восприятия ухом мощность звуковых волн.

Слайд 9

Источники звука бывают двух видов: искусственные и естественные, найдите их в загадках:

Слайды 10 – 12

1. Пролетая мимо уха,

Он жужжит мне: «Я не муха».

Нос долог,

Кто его убьет,

Тот кровь свою прольет.

(Комар).

3. Маленькая певунья в лесу

живет,

Перышки чистит,

(Птичка).

4. Ходит взад и вперед,

Никогда не устает.

Всем кто придет,

Она руку подает.

(Дверь).

5. Два братца

В одно донце стучатся.

Но не просто бьют-

Вместе песню поют.

(Барабан).

6. Пастись корову на лужок

Отправилась хозяйка,

Повесив маленький звонок.

Что это? Отгадай-ка!

(Колокольчик).

6. На треугольник деревянный

Натянули три струны,

В руки взяли, заиграли-

Ноги сами в пляс пошли.

(Балалайка).

8. Аппарат небольшой,

Но удивительный такой.

Если друг мой далеко,

Говорить мне с ним легко.

(Телефон).

Музыкальные звуки издают различные музыкальные инструменты. Источники звука в них разные, поэтому музыкальные инструменты делятся на несколько групп:

Слайды 13– 16

  • Ударные – бубны, барабаны, ксилофоны и т.д. (Здесь колеблются от удара палочки или руки натянутый материал, металлические пластинки и т.д.);
  • Духовые – флейты, горны и фанфары, кларнеты, валторны, трубы (колебания столба воздуха внутри инструмента
  • Струнные – скрипка, гитара и т.д .
  • Клавишные – пианино, клавесины (колебания струн вызывается здесь ударом по ним молоточков );

Таким образом, по действию, производимому на нас, все звуки делятся на две группы: музыкальные звуки и шумы. Чем они отличаются друг от друга?

Установить различие между музыкой и шумом довольно трудно, так как-то, что может казаться музыкой для одного, может быть просто шумом для другого. Некоторые считают оперу совершенно не музыкальной, а другие наоборот, видят предел совершенства в музыке. Ржание коней или скрип нагруженного лесом вагона может быть шумом для большинства людей, но музыкой для лесопромышленника. Любящим родителям крик новорожденного ребенка может казаться музыкой, для других такие звуки представляют просто шум.

Однако большинство людей согласится с тем, что звуки, идущие от колеблющихся струн, язычков, камертона и вибрирующих голосовых связок певца, музыкальные. Но если так. То, что существенно в возбуждении музыкального звука или тона?

Наш опыт показывает, что для музыкального звука существенно, чтобы колебания происходили через равные промежутки времени. Колебания камертона, струн и т.д. имеют такой характер; колебания поездов, вагонов с лесом и т.д. происходят через неправильные, неравномерные промежутки времени, и производимые ими звуки представляют только шум. Шум отличается от музыкального тона тем, что ему не соответствует какая-либо определенная частота колебаний и, следовательно, определенная высота звука. В шуме присутствуют колебания различных частот. С развитием промышленности и современного скоростного транспорта появилась новая проблема – борьба с шумом. Возникло даже новое понятие «шумовое загрязнение» среды обитания.

Слайд17 Р.Рождественский дал очень точный и емкий образ нынешней действительности:

Аэродромы,

Пирсы и перроны,

Леса без птиц и земли без воды…

Все меньше - окружающей природы,

Все больше – окружающей среды.

Шум, особенно большой интенсивности, не просто надоедает и утомляет – он может и серьезно подорвать здоровье.

Наиболее опасно длительное воздействие интенсивного шума на слух человека, которое может привести к частичной или полной потере слуха. Медицинская статистика показывает, что тугоухость в последние годы выходит на ведущее место в структуре профессиональных заболеваний и не имеет тенденции к снижению.

Поэтому важно знать особенности восприятия звука человеком, допустимые с точки зрения обеспечения здоровья, высокой производительности и комфортности уровни шума, а также средства и способы борьбы с шумом.

Негативное воздействие шума на человека и защита от него.

Вредные воздействия шума на организм человека.

Слайд 18

Проявление вредного воздействия шума на организм человека весьма разнообразно.

Длительное воздействие интенсивного шума (выше 80 дБ) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, выражающееся временным смещением порога слышимости, которое исчезает после окончания воздействия шума, а при большой длительности и (или) интенсивности шума происходят необратимые потери слуха (тугоухость) , характеризуемые постоянным изменением порога слышимости.

Различают следующие степени потери слуха:

Слайд 19

  • I степень (легкое снижение слуха) – потеря слуха в области речевых частот составляет 10 - 20 дБ, на частоте 4000 Гц – 20 - 60 дБ;
  • II степень (умеренное снижение слуха) – потеря слуха в области речевых частот составляет 21 - 30 дБ, на частоте 4000 Гц – 20 - 65 дБ;
  • III степень (значительное снижение слуха) – потеря слуха в области речевых частот составляет 31 дБ и более, на частоте 4000 Гц – 20 - 78 дБ.

Действие шума на организм человека не ограничивается воздействием на орган слуха . Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Человек, подвергающийся воздействию интенсивного (более 80 дБ) шума, затрачивает в среднем на 10 – 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую им при уровне звука ниже 70 дБ. Установлено повышение на 10 – 15% общей заболеваемости рабочих шумных производств. Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 – 70 дБ). Из вегетативных реакций наиболее выраженным является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также повышения артериального давления (при уровнях звука выше 85 дБ).

Воздействие шума на центральную нервную систему вызывает увеличение латентного (скрытого) периода зрительной моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 – 60 дБ), существенно изменяет биопотенциалы мозга, их динамику, вызывает биохимические изменения в структурах головного мозга.

При импульсных и нерегулярных шумах степень воздействия шума повышается.

Изменения в функциональном состоянии центральной и вегетативной нервных систем наступают гораздо раньше и при меньших уровнях шума, чем снижение слуховой чувствительности.

Слайд 20

В настоящее время "шумовая болезнь" характеризуется комплексом симптомов:

  • снижение слуховой чувствительности;
  • изменение функции пищеварения, выражающейся в понижении кислотности;
  • сердечно-сосудистая недостаточность;
  • нейроэндокринные расстройства.

Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т.д. Воздействие шума может вызывать негативные изменения эмоционального состояния человека, вплоть до стрессовых. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБ производительность труда снижается на 20%.

Слайд 21 (Фильм цифровые наркотики)

Слайд 22

Ультразвуки (свыше 20000 Гц) также являются причиной повреждения слуха, хотя человеческое ухо на них не реагирует. Мощный ультразвук воздействует на нервные клетки головного мозга и спинной мозг, вызывает жжение в наружном слуховом проходе и ощущение тошноты.

Не менее опасными являются инфразвуковые воздействия акустических колебаний (менее 20 Гц). При достаточной интенсивности инфразвуки могут воздействовать на вестибулярный аппарат, снижая слуховую восприимчивость и повышая усталость и раздражительность, и приводят к нарушению координации. Особую роль играют инфрачастотные колебания с частотой 7 Гц. В результате их совпадения с собственной частотой альфа - ритма головного мозга наблюдаются не только нарушения слуха, но и могут возникать внутренние кровотечения. Инфразвуки (6 8 Гц) могут привести к нарушению сердечной деятельности и кровообращения.

Слайды 23 – 24

СОХРАНЕНИЕ СЛУХА

Заткнуть уши большими пальцами, указательные пальцы осторожно поместить на веки закрытых глаз. Средние пальцы сжимают ноздри. Безымянные пальцы и оба мизинца лежат на губах, которые сложены трубочкой и вытянуты вперед. Выполнить плавный вдох через рот так, чтобы надулись щеки. После вдоха наклонить голову и задержать дыхание. Затем медленно поднять голову, открыть глаза и выдохнуть через нос.

2. Упражнение "Дерево" на молчание - очень простое. Говорить можно только в случае прямого вопроса, поставленного в правильной форме. Вопросы: « Ну как?", " Ты чё?", "Я пошёл, или как?" - не работают. Через некоторое время спрашивающий начинает ощущать себя подлым провокатором и со своим вопросом: "Сколько времени?" - разбирается сам... И наступает тишина. Упражнение помогает сохранению энергии, обострению слуха и концентрации.

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. В прошлом году автор работал над проблемой природы звука и выполнил исследовательскую работу: «В мире звуков», в которой были вычислены частоты звука музыкальной гаммы с помощью стакана с водой.

Звук характеризуется величинами: частотой, длиной волны и скоростью. А также его характеризуют амплитуда и громкость. Поэтому мы живём в разнообразном мире звуков и его многообразии оттенков.

В конце предыдущего исследования у меня возник основополагающий вопрос: существуют ли способы определения скорости звука в домашних условиях? Поэтому можно сформулировать проблему: надо найти способы или способ определения скорости звука.

Теоретические основы учения о звуке

Мир звуков

До-ре-ми-фа-соль-ля-си

Гамма звуков. Существуют ли она независимо от уха? Только ли это субъективные ощущения, и тогда мир сам по себе беззвучен, или это отражение реальной действительности в нашем сознании? Если второе, то и без нас мир будет звенеть симфонией звуков.

Еще Пифагору (582-500 гг. до н. э.) легенда приписывает открытие числовых отношений, соответствующих разным музыкальным звукам. Проходя мимо кузницы, где несколько рабочих ковали железо, Пифагор подметил, что звуки находятся в отношении квинты, кварты и октавы. Войдя в кузницу, он убедился, что молот, дававший октаву, сравнительно с наиболее тяжелым молотом имел вес, равный 1/2 последнего, молот, дававший квинту, имел вес, равный 2/3, а кварту - 3/4 тяжелого молота. По возвращении домой Пифагор повесил струны с грузами, пропорциональными 1/2: 2/3: 3/4 на концах и нашел будто бы, что струны при ударе давали те же музыкальные интервалы. Физически легенда не выдерживает критики, наковальня при ударах различными молотами издает свой собственный один и тот же тон, да и законы колебания струн не подтверждают легенды. Но, во всяком случае, легенда говорит о давности учения о гармонии. Заслуги пифагорейцев в области музыки несомненны. Им принадлежит плодотворная мысль об измерении тона звучащей струны путем измерения ее длины. Им был известен прибор «монохорд» - ящик из кедровых досок с одной натянутой струной на крышке. Если ударить по струне, она издает один определенный тон. Если разделить струну на два участка, подперев ее трехгранной колкой посередине, то она будет издавать более высокий тон. Он звучит настолько схоже с основным тоном, что при одновременном звучании они почти сливаются в один тон. Отношение двух тонов в музыке - интервал. При отношении длин струн равным 1/2: 1 интервал называется октавой. Известные Пифагору интервалы квинта и кварта получаются, если колку монохорда сдвинуть так, чтобы она отделяла соответственно 2/3 или 3/4 струны.

Что касается числа семь, то оно связано с каким-то еще более древним и таинственным представлением людей полурелигиозного, полумистического характера. Наиболее, однако, вероятно, что это связано с астрономическим делением лунного месяца на четыре семидневные недели. Это число фигурирует в течение тысячелетий в различных преданиях. Так, мы находим его в древнем папирусе, который за 2000 лет до нашей эры написал египтянин Ахмес. Этот любопытный документ озаглавлен так: «Наставление к приобретению знания всех тайных вещей». Среди прочего находим там таинственную задачу под названием «лестница». В ней говорится о лестнице чисел, представляющих собой степени числа семь: 7, 49, 343, 2401, 16 807. Под каждым числом иероглиф-картина: кошка, мышь, ячмень, мера. Папирус не дает ключа к разгадке этой задачи. Современные истолкователи папируса Ахмеса расшифровывают условие задачи так: У семи лиц есть по семь кошек, каждая кошка съедает по семи мышей, каждая мышь может съесть семь колосьев ячменя, из каждого колоса может вырасти по семь мер зерна. Сколько зерна сберегут кошки? Чем не задача с производственным содержанием, предложенная 40 веков назад?

Семь тонов насчитывает современная европейская музыкальная гамма, но не во все времена и не у всех народов была семитонная гамма. Так, например, в древнем Китае употреблялась гамма из пяти тонов. В целях единства настройки высота этого контрольного тона должна быть строго декларирована международным соглашением. В качестве такого основного тона с 1938 г. принят тон, соответствующий частоте 440 Гц (440 колебаний в секунду). Несколько тонов, звучащих одновременно, образуют музыкальный аккорд. Люди, обладающие так называемым абсолютным слухом, могут в аккорде слышать отдельно взятые тона.

Вам, конечно, известно в основном строение человеческого уха. Напомним его кратко. Ухо состоит из трех частей: 1) наружное ухо, оканчивающееся барабанной перепонкой; 2) среднее ухо, которое при помощи трех слуховых косточек: молоточка, наковальни и стремечка - подает колебания барабанной перепонки внутреннему уху; 3) внутреннее ухо, или лабиринт, состоит из полукружных каналов и улитки. Улитка является звуковоспринимающим аппаратом. Внутреннее ухо заполнено жидкостью (лимфой), приводимой в колебательное движение ударами стремечка по перепонке, затягивающей овальное окошечко в костяной коробочке лабиринта. На перегородке, делящей улитку на две части, по всей ее длине расположены поперечными рядами тончайшие нервные волокна постепенно возрастающей длины.

Мир звуков реален! Но, конечно, не следует думать, что этот мир вызывает у всех совершенно одинаковые ощущения. Спрашивать, воспринимают ли другие люди звуки совершенно так же, как вы, - это ненаучная постановка вопроса.

1. 2. Источники звука. Звуковые колебания

Разнообразен мир окружающих нас звуков - голоса людей и музыка, пение птиц и жужжание пчел, гром во время грозы и шум леса на ветру, звук проезжающих автомобилей, самолетов и т. д.

Общим для всех звуков является то, что порождающие их тела, т. е. источники звука, колеблются.

Укрепленная в тисках упругая металлическая линейка будет издавать звук, если ее свободную часть, длина которой подобрана определенным образом, привести в колебательное движение. В данном случае колебания источника звука очевидны.

Но далеко не всякое колеблющееся тело является источником звука. Например, не издает звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если переместить ее в тисках вверх и тем самым удлинить свободный конец настолько, чтобы частота его колебаний стала меньше 20 Гц.

Исследования показали, что человеческое ухо способно воспринимать как звук механические колебания тел, происходящие с частотой от 20 Гц до 20000 Гц. Поэтому колебания, частоты которых находятся в этом диапазоне, называются звуковыми.

Механические колебания, частота которых превышает 20 000 Гц, называются ультразвуковыми, а колебания с частотами менее 20 Гц - инфразвуковыми.

Следует отметить, что указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается - некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше 20000 Гц.

Колебания, частоты которых больше 20 000 Гц или меньше 20 Гц, слышат некоторые животные.

Мир наполнен самыми разнообразными звуками: тиканье часов и гул моторов, шелест листьев и завывание ветра, пение птиц и голоса людей. О том, как рождаются звуки, и что они собой представляют, люди начали догадываться очень давно. Замечали, к примеру, что звук создают вибрирующие в воздухе тела. Еще древнегреческий философ и ученый-энциклопедист Аристотель, исходя из наблюдений, верно объяснял природу звука, полагая, что звучащее тело создает попеременное сжатие и разрежение воздуха. Так, колеблющаяся струна то уплотняет, то разрежает воздух, а благодаря упругости воздуха эти чередующиеся воздействия передаются дальше в пространство - от слоя к слою, возникают упругие волны. Достигая нашего уха, они воздействуют на барабанные перепонки и вызывают ощущение звука.

На слух человек воспринимает упругие волны, имеющие частоту в пределах примерно от 16 Гц до 20 кГц (1 Гц - 1 колебание в секунду). В соответствии с этим упругие волны в любой среде, частоты которых лежат в указанных пределах, называют звуковыми волнами или просто звуком. В воздухе при температуре 0° С и нормальном давлении звук распространяется со скоростью 330 м/с.

Источником звука в газах и жидкостях могут быть не только вибрирующие тела. Например, свистят в полете пуля и стрела, завывает ветер. И рев турбореактивного самолета складывается не только из шума работающих агрегатов - вентилятора, компрессора, турбины, камеры сгорания и т. д. , но также из шума реактивной струи, вихревых, турбулентных потоков воздуха, возникающих при обтекании самолета на больших скоростях. Стремительно несущееся в воздухе или в воде тело как бы разрывает обтекающий его поток, периодически порождает в среде области разрежения и сжатия. В результате возникают звуковые волны.

Важны в учении о звуке также понятия тона и тембра звука. Всякий реальный звук, будь то голос человека или игра музыкального инструмента, - это не простое гармоническое колебание, а своеобразная смесь многих гармонических колебаний с определенным набором частот. То из них, которое имеет наиболее низкую частоту, называют основным тоном, другие - обертонами. Разное количество обертонов, присущих тому или иному звуку, придает ему особую окраску - тембр. Отличие одного тембра от другого обусловлено не только числом, но и интенсивностью обертонов, сопровождающих звучание основного тона. По тембру мы легко отличаем звуки скрипки и рояля, гитары и флейты, узнаем голоса знакомых людей.

1. 4. Высота и тембр звука

Заставим звучать две разные струны на гитаре или балалайке. Мы услышим разные звуки: один - более низкий, другой - более высокий. Звуки мужского голоса более низкие, чем звуки голоса женщины, звуки баса ниже звуков тенора, сопрано выше альта.

От чего зависит высота звука?

Можно сделать вывод, что высота звука зависит от частоты колебаний: чем больше частота колебаний источника звука, тем выше издаваемый им звук.

Чистым тоном называется звук источника, совершающего колебания одной частоты.

Звуки от других источников (например, звуки различных музыкальных инструментов, голоса людей, звук сирены и многие другие) представляют собой совокупность колебаний разных частот, т. е. совокупность чистых тонов.

Самая низкая (т. е. самая малая) частота такого сложного звука называется основной частотой, а соответствующий ей звук определенной высоты - основным тоном (иногда его называют просто тоном). Высота сложного звука определяется именно высотой его основного тона.

Все остальные тоны сложного звука называются обертонами. Обертоны определяют тембр звука, т. е. такое его качество, которое позволяет нам отличать звуки одних источников от звуков других. Например, мы легко отличаем звук рояля от звука скрипки даже в том случае, если эти звуки имеют одинаковую высоту, т. е. одну и ту же частоту основного тона. Отличие же этих звуков обусловлено разным набором обертонов.

Таким образом, высота звука определяется частотой его основного тона: чем больше частота основного тона, тем выше звук.

Тембр звука определяется совокупностью его обертонов.

1. 5. Почему существуют различные звуки?

Звуки отличаются друг от друга по громкости, высоте и тембру. Громкость звука зависит частью от удаления уха слушателя от звучащего объекта, а отчасти от амплитуды колебания последнего. Слово амплитуда означает расстояние, которое проходит тело от одной крайней точки до другой во время своих колебаний. Чем больше это расстояние, тем громче звук.

Высота звука зависит от быстроты или частоты колебаний тела. Чем больше колебаний совершает объект за одну секунду, тем выше производимый им звук.

Однако два звука, абсолютно совпадающие по громкости и высоте, могут отличаться друг от друга. Музыкальность звука зависит от числа и силы обертонов, присутствующих в нем. Если заставить струну скрипки колебаться вдоль всей длины так, чтобы при этом не возникало никаких дополнительных колебаний, то будет слышен самый низкий тон, который она только способна произвести. Этот тон называется основным. Однако, если на ней возникнут дополнительные колебания отдельных частей, то появятся дополнительные более высокие ноты. Гармонируя с основным тоном, они создадут особенное, скрипичное звучание. Эти более высокие по сравнению с основным тоном ноты и называются обертонами. Они-то и определяют тембр того или иного звука.

1. 6. Отражение и распространение возмущений.

Возмущение части натянутой резиновой трубки или пружины перемещается по ее длине. Когда возмущение достигает конца трубки, то оно отражается вне зависимости от того, закреплен конец трубки или свободен. За удерживаемый конец резко дергают вверх и затем приводят его в исходное положение. Образовавшийся на трубке гребень движется вдоль трубки до стены, где он отражается. При этом отраженная волна имеет форму впадины, т. е. находится ниже среднего положения трубки, в то время как исходная пучность находилась выше. С чем связано это различие? Представим конец резиновой трубки, закрепленный в стене. Поскольку он закреплен, он не может двигаться. Направленная вверх сила пришедшего импульса стремится заставить двигаться его вверх. Однако поскольку он не может двигаться, то должна присутствовать равная и противоположно направленная вниз сила, исходящая от опоры и приложенная к концу резиновой трубки, и поэтому отраженный импульс располагается пучностью вниз. Разность фаз отраженного и исходного импульсов равна 180°.

1. 7. Стоячие волны

Когда рука, удерживающая рези новую трубку, движется вверх и вниз и частота движения постепенно увеличивается, то достигается точка, при которой получается одиночная пучность. Дальнейшее увеличение частоты колебания руки приведет к образованию двойной пучности. Если вы пpoxpoнометрируете частоту движений руки, то вы увидите, что их частота удвоилась. Поскольку трудно двигать рукой более быстро, лучше применить механический вибратор.

Образованные волны называются стоячими или стационарными волнами. Они образуются, потому что отраженная волна накладывается на падающую.

В данном исследовании присутствуют две волны: падающая и отраженная. Они имеют одинаковые частоту, амплитуду и длину волны, но распространяются в противоположных направлениях. Это бегущие волны, но они интерферируют друг с другом и таким образом создают стоячие волны. Это имеет такие последствия: а)все частицы в каждой половине длины волны колеблются в фазе, т. е. все они движутся в одном направлении в одно время; б)каждая частица имеет амплитуду, отличную от амплитуды следующей частицы; в)разность фаз между колебаниями частиц одной полуволны и колебаниями частиц последующей полуволны равна 180°. Это попросту означает, что они либо отклонены максимально в противоположные стороны в одно время, либо, если они оказываются в среднем положении, начинают двигаться в противоположных направлениях.

Некоторые частицы не движутся(они имеют нулевую амплитуду), поскольку действующие на них силы всегда равны и противоположны. Эти точки называются узловыми или узлами, и расстояние между двумя последующими узлами составляет половину длины волны, т. е. 1\2 λ.

Максимальное движение происходит в точках и амплитуда этих точек вдвое больше амплитуды падающей волны. Эти точки называются пучностями, и расстояние между двумя последующими пучностями составляет половину длины волны. Расстояние между узлом и следующей пучностью составляет одну четвертую длины волны, т. е. 1\4λ.

Стоячая волна отличается от бегущей. В бегущей волне: а)все частицы имеют одинаковую амплитуду колебаний; б)каждая частица не находится в фазе со следующей.

1. 8. Резонансная труба.

Резонансная труба представляет собой узкую трубу, в которой создаются колебания столба воздуха. Для изменения длины столба воздуха применяются разные способы, например изменения уровня воды в трубе. Закрытый конец трубы представляет собой узел, потому что находящийся в соприкосновении с ним воздух неподвижен. Открытый конец трубы всегда является пучностью, поскольку амплитуда колебаний здесь максимальна. Присутствует один узел и одна пучность. Длина трубы составляет примерно одну четвертую длины стоячей волны.

Для того чтобы показать, что длина столба воздуха обратно пропорциональна частоте волны, нужно применить ряд камертонов. Лучше использовать маленький громкоговоритель, соединенный с откалиброванным генератором звуковой частоты, вместо камертонов фиксированной частоты. Вместо труб с водой применяется длинная труба с поршнем, поскольку это облегчает подбор длины столбов воздуха. Вблизи от конца трубы помещается постоянный источник звука, и получаются резонансные длины воздушного столба для частот 300 Гц, 350 Гц, 400 Гц, 450 Гц, 500 Гц, 550 Гц и 600 Гц.

Когда вода наливается в бутылку, образуется звук определенного тона, поскольку воздух в бутылке начинает колебаться. Высота этого тона повышается по мере уменьшения объема воздуха в бутылке. Каждая бутылка имеет определенную собственную частоту, и, когда дуешь поверх открытого горлышка бутылки, может также образоваться звук.

В начале войны 1939-1945 гг. прожектора фокусировались на самолетах при помощи оборудования, работавшего в звуковом диапазоне. Чтобы не дать им сфокусироваться, некоторые экипажи выбрасывали из самолетов пустые бутылки, когда они попадали в луч прожектора. Громкие звуки падающих бутылок воспринимались приемником, и прожектора теряли фокус

1. 9. Духовые музыкальные инструменты.

Звуки, образуемые духовыми инструментами, зависят от возникающих в трубах стоячих волн. Тон зависит от длины трубы и вида колебаний воздуха в трубе.

Например, открытая труба органа. Воздух вдувается в трубу через отверстие и ударяется об острый выступ. Это заставляет воздух в трубе колебаться. Поскольку оба конца трубы открыты, то на каждом конце всегда возникает пучность. Простейшим видом колебаний является такой, когда на каждом конце находится пучность, а один узел - в середине. Это основные колебания, и длина трубы примерно равна половине длины волны. Частота основного тона =с/2l, где с - скорость звука и l - длина трубы.

Закрытая органная труба имеет пробку на конце, т. е. конец трубы закрыт. Это означает, что на этом конце всегда находится узел. Совершенно очевидно, что: а)основная частота закрытой трубы составляет половину основной частоты открытой трубы той же длины; б)закрытой трубой могут быть образованы лишь нечетные обертоны. Таким образом, диапазон тонов открытой трубы больше, чем закрытой.

Физические условия изменяют звучание музыкальных инструментов. Повышение температуры вызывает увеличение скорости звука в воздухе и, следовательно, увеличение основной частоты. Длина трубы также несколько увеличивается, вызывая уменьшение частоты. Играя на органе, например, в церкви, исполнители просят включить обогрев, чтобы орган звучал при нормальной для него температуре. Струнные инструменты имеют регуляторы натяжения струн. Повышение температуры ведет к некоторому расширению струны и уменьшению натяжения.

Глава 2. Практическая часть

2. 1. Способ определения скорости звука при помощи резонансной трубы.

Прибор показан на рисунке. Резонансная труба представляет собой длинную узкую трубу А, соединенную с резервуаром В через резиновый патрубок. В обеих трубах находится вода. Когда В поднят, длина воздушного столба в А уменьшается, а когда В опускается, длина столба воздуха в А увеличивается. Поместите колеблющийся камертон сверху А, когда длина столба воздуха в А практически равна нулю. Вы не услышите никакого звука. По мере увеличения длины столба воздуха в А вы услышите, как звук усиливается, достигает максимума, а затем начинает затихать. Повторите эту процедуру, регулируя В таким образом, чтобы длина воздушного столба в А давала максимальный по силе звук. Затем замерьте длину l1 столба воздуха.

Громкий звук слышен потому, что собственная частота столба воздуха длиной l1 равна собственной частоте камертона, и поэтому воздушный столб колеблется в унисон с ним. Вы нашли первое положение резонанса. Фактически длина колеблющегося воздуха несколько больше столба воздуха в А.

Если вы опустите. В еще ниже, так, чтобы длина воздушного столба увеличилась, то найдете другое положение, в котором звук достигает максимальной силы. Точно определите это положение и измерьте длину l2 столба воздуха. Это - второе положение резонанса. Как и прежде, вершина находится на открытом конце трубы, а узел - на поверхности воды. Это может быть достигнуто только в случае, показанном на рисунке, при этом длина столба воздуха в трубе приблизительно составляет 3\4 длины волны (3\4 λ).

Вычитание двух замеров дает:

3\4 λ - 1\4 λ = l2 - l1 , следовательно, 1\2 λ = l2 - l1.

Итак, c = ν λ = ν 2 (l2 - l1), где ν - частота камертона. Это быстрый и достаточно точный способ определения скорости звука в воздухе.

2. 2. Эксперимент и вычисления.

Для определения скорости звуковой волны были использованы следующие инструменты и оборудование:

Штатив универсальный;

Толстостенная стеклянная трубка, запаянная с одного конца, длиной 1,2метра;

Камертон, частота которого 440 Гц, нота «ля»;

Молоточек;

Бутылка с водой;

Измерительная линейка.

Ход исследования:

1. Собрал штатив, на котором закрепил кольца на муфте.

2. Поместил стеклянную трубку в штативе.

3. Доливая воды в трубку, и возбуждая звуковые волны на камертоне, создавал стоячие волны в трубке.

4. Опытным путём добился такой высоты водяного столба, чтобы в стеклянной трубке были усиленны звуковые волны, чтобы наблюдался резонанс в трубке.

5. Замерил первую длину свободного от воды конца трубки - l2 = 58 см = 0,58 м

6. Снова долил воды в трубку. (Повторить действия пункта 3, 4, 5) – l1 = 19 см = 0,19 м

7. Выполнил вычисления по формуле: c = ν λ = ν 2 (l2 - l1),

8. с = 440 Гц * 2 (0,58 м - 0,19 м) = 880 * 0,39 = 343,2 м\с

Результат исследования – скорость звука = 343,2 м\с.

2. 3. Выводы практической части

С помощью выбранного оборудования, определи скорость звука в воздухе. Сравнили полученный результат с табличной величиной – 330 м\с. Полученная величина приблизительно равна табличной. Расхождения получились из-за погрешности измерений, вторая причина: табличная величина дана при температуре 00С, а в квартире температура воздуха = 240С.

Следовательно, предложенный метод для определения скорости звука с помощью резонансной трубы можно применять.

Заключение.

Умение вычислять и определять характеристики звука весьма полезно. Как следует из исследования, характеристики звука: громкость, амплитуда, частота, длина волны – эти значения присущи определённым звукам, по ним можно определить, какой звук мы слышим в данный момент. Мы опять сталкиваемся с математической закономерность звучания. А вот скорость звука хоть и возможно вычислить, но она зависит от температуры помещения и пространства, где происходит звучание.

Таким образом, цель исследования была выполнена.

Гипотеза исследования подтвердилась, но в дальнейшем необходимо учитывать погрешности в измерениях.

Исходя из этого, задачи исследования были выполнены:

Изучены теоретические основы этого вопроса;

Выяснены закономерности;

Выполнены необходимые замеры;

Выполнены вычисления скорости звука;

Полученные результаты вычислений были сравнены с уже имеющимися табличными данными;

Дана оценка полученных результатов.

В результате работы: o Научился определять скорость звука с помощью резонансной трубы; o Столкнулся с проблемой разной скорости звука при разной температуре, поэтому этот вопрос постараюсь исследовать в ближайшее время.

Включайся в дискуссию
Читайте также
Самые вкусные рецепты блюд из манго: салаты с креветками, пюре, смузи, варенье Простые рецепты с манго
Нас манят разные дороги… О путешествиях в цитатах и афоризмах
Что в действительности дают путешествия человеку?