Подпишись и читай
самые интересные
статьи первым!

Звуковые колебания имеющие определенную периодичность во времени. Звуковые волны и их характеристики

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам наслаждение. Мы с удовольствием слушаем человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах.

Причина звука - вибрация(колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой
от 16 до 20000 раз в секунду. Вибрирующее тело может быть твердым, например, струна
или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах
или жидким, например, волны на воде.

Громкость

Громкость зависит от амплитуды колебаний в звуковой волне. За единицу громкости звука принят 1 Бел(в честь Александра Грэхема Белла, изобретателя телефона). На практике громкость измеряют в децибелах (дБ).1 дБ = 0,1Б.

10 дБ – шепот;

20–30 дБ – норма шума в жилых помещениях;
50 дБ – разговор средней громкости;
80 дБ – шум работающего двигателя грузового автомобиля;
130 дБ – порог болевого ощущения

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Высокие звуки представлены высокочастотными волнами – например, птичье пение.

Низкие звуки – это низкочастотные волны, например, звук двигателя большого грузовика.

Звуковые волны

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

КАМЕРТОН

- это U-образная металлическая пластина , концы которой могут колебаться после удара по ней.

Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии.
Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усилениязвука.
Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора.
Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Э Х О

Громкий звук, отражаясь от преград, возвращается к источнику звука спустя несколько мгновений, и мы слышим эхо.

Умножив скорость звука на время, прошедшее от его возникновения до возвращения, можно определить удвоенное расстояние от источника звука до преграды.
Такой способ определения расстояния до предметов используется в эхолокации.

Некоторые животные, например летучие мыши,
также используют явление отражения звука, применяя метод эхолокации

На свойстве отражения звука основана эхолокация.

Звук - бегущая механическая волна и передает энергию.
Однако мощность одновременного разговора всех людей на земном шаре едва ли больше мощности одного автомобиля «Москвич»!

Ультразвук.

· Колебания с частотами, превосходящими 20 000 Гц, называют ультразвуком. Ультразвук широко применяется в науке и технике.

· Жидкость вскипает при прохождении ультразвуковой волны (кавитация). При этом возникает гидравлический удар. Ультразвуки могут отрывать кусочки от поверхности металла и производить дробление твердых тел. С помощью ультразвука можно смешать не смешивающиеся жидкости. Так готовятся эмульсии на масле. При действии ультразвука происходит омыление жиров. На этом принципе устроены стиральные устройства.

· Широко используется ультразвук в гидроакустике. Ультразвуки большой частоты поглощаются водой очень слабо и могут распространяться на десятки километров. Если они встречают на своем пути дно, айсберг или другое твердое тело, они отражаются и дают эхо большой мощности. На этом принципе устроен ультразвуковой эхолот.

В металле ультразвук распространяется практически без поглощения. Применяя метод ультразвуковой локации, можно обнаружить мельчайшие дефекты внутри детали большой толщины.

· Дробящее действие ультразвука применяют для изготовления ультразвуковых паяльников.

Ультразвуковые волны , посланные с корабля, отражаются от затонувшего предмета. Компьютер засекает время появления эха и определяет местоположение предмета.

· Ультразвук применяют в медицине и биологии для эхолокации, для выявления и лечения опухолей и некоторых дефектов в тканях организма, в хирургии и травматологии для рассечения мягких и костных тканей при различных операциях, для сварки сломанных костей, для разрушения клеток (ультразвук большой мощности).

Инфразвук и его влияние на человека.

Колебания с частотами ниже 16 Гц называются инфразвуком.

В природе инфразвук возникает из-за вихревого движения воздуха в атмосфере или в результате медленных вибраций различных тел. Для инфразвука характерно слабое поглощение. Поэтому он распространяется на большие расстояния. Организм человека болезненно реагирует на инфразвуковые колебания. При внешних воздействиях, вызванных механической вибрацией или звуковой волной на частотах 4-8 Гц, человек ощущает перемещение внутренних органов, на частоте 12 Гц – приступ морской болезни.

· Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механические колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического или гидродинамического происхождения).

Звук , как мы помним, является упругими продольными волнами. А волны порождаются колеблющимися предметами.

Примеры источников звука : колеблющаяся линейка, один конец которой зажат, колеблющиеся струны, мембрана динамика.

Но не всегда колеблющиеся предметы порождают слышимый ухом звук – если частота их колебаний ниже 16 Гц, то они порождают инфразвук , а если больше 20кГц, то ультразвук .

Ультразвук и инфразвук – с точки зрения физики такие же упругие колебания среды, как и обычный звук, но ухо не способно их воспринять, так как эти частоты слишком далеки от резонансной частоты барабанной перепонки (перепонка просто не может колебаться с такой частотой).

Звуки высокой частоты ощущаются как более тонкие, звуки низкой частоты – как более басовитые.

Если колебательная система совершает гармонические колебания одной частоты, то её звук называется чистым тоном . Обычно источники звука издают звуки сразу нескольких частот – тогда наименьшая частота называется основным тоном , а остальные называются обертонами . Обертона определяют тембр звука – именно из-за них мы легко отличим пианино от скрипки, даже когда основная частота у них одинаковая.

Громкость звука – это субъективное ощущение, позволяющее сравнивать звуки как «более громкие» и «менее громкие». Громкость зависит от многих фактором – он частоты, от длительности, от индивидуальных особенностей слушателя. Но сильнее всего она зависит от звукового давления, которое напрямую связано с амплитудой колебаний того предмета, что издаёт звук.

Единица измерения громкости называется сон .

В практических задачах обычно используют величину, называемую уровень громкости или уровень звукового давления . Измеряется эта величина в белах [Б] или, чаще, в децибелах [дБ] .

Эта величина логарифмически зависит от звукового давления – то есть увеличение давления в 10 раз увеличивает уровень громкости на 1 дБ.

Звук листания газеты – это примерно 20 дБ, будильник – 80 дБ, звук взлетающего самолёта – это 100-120 дБ (на грани болевых ощущений).

Одно из необычных применений звука (точнее ультразвука) – это эхолокация . Можно издать звук и измерить время, через которое придёт эхо. Чем больше расстояние до препятствия, тем больше будет задержка. Обычно такой способ измерения расстояний используется под водой, но летучие мыши применяют его прямо в воздухе.

Расстояние при эхолокации определяется следующим образом:

2r = vt , где v – скорость звука в среде, t – время задержки до эха, r – расстояние до преграды.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Источники звука.

Звуковые колебания

Конспект урока.

1.Организационный момент

Здравствуйте, ребята! Наш урок имеет широкое практическое применение в повседневной практике. Поэтому ваши ответы будут зависеть от наблюдательности в жизни и от умения анализировать свои наблюдения.

2. Повторение опорных знаний.

На экране проектора высвечиваются слайды №1, 2, 3, 4, 5 (приложение 1).

Ребята, перед вами кроссворд, разгадав который вы узнаете ключевое слово урока.

1-й фрагмент: назовите физическое явление

2-й фрагмент: назовите физический процесс

3-й фрагмент: назовите физическую величину

4-й фрагмент: назовите физический прибор

Р

З

Н

В

У

К

Обратите внимание на выделенное слово. Это слово «ЗВУК», оно является ключевым словом урока. Наш урок посвящён звуку и звуковым колебаниям. Итак, тема урока «Источники звука. Звуковые колебания». На уроке вы узнаете, что является источником звука, что такое звуковые колебания их возникновение и некоторые практические применения в вашей жизни.

3. Объяснение нового материала.

Проведём опыт. Цель опыта: выяснить причины возникновения звука.

Опыт с металлической линейкой (приложение 2).

Что вы наблюдали? Какой можно сделать вывод?

Вывод: колеблющееся тело создаёт звук.

Проведём следующий опыт. Цель опыта: выяснить, всегда ли звук создаётся колеблющимся телом.

Прибор, который вы видите перед собой, называется камертон.

Опыт с камертоном и теннисным шариком, повешенным на нити (приложение 3).

Вы слышите звук, который издаёт камертон, но колебаний камертона не заметно. Чтобы убедиться в том, что камертон колеблется, осторожно пододвинем его к тенистому шарики подвешенному на нити и увидим, что колебания камертона передались шарику, который пришёл в периодическое движение.

Вывод: звук порождается любым колеблющимся телом.

Мы живём в океане звуков. Звук создаётся источниками звука. Существуют как искусственные, так и естественные источники звука. К естественным источникам звука относятся голосовые связки (приложение 1 – слайд №6).Воздух, которым мы дышим, выходит из лёгких через дыхательные пути в гортань. В гортани находятся голосовые связки. Под давлением выдыхаемого воздуха они начинают колебаться. Роль резонатора играют полости рта и носа, а также грудь. Для членораздельной речи кроме голосовых связок необходимы также язык, губы, щёки, мягкое нёбо и надгортанник.

К естественным источникам звука относятся также жужжание комара, мухи, пчелы (колеблются крылья ).

Вопрос: за счёт чего создаётся звук.

(Воздух в шарике находится под давлением в сжатом состоянии. Затем, резко расширяется и создаёт звуковую волну.)

Итак, звук создаёт не только колеблющееся, но и резко расширяющееся тело. Очевидно, что во всех случаях возникновения звука происходит перемещение слоёв воздуха, т. е. возникает звуковая волна.

Звуковая волна невидимая, её только можно услышать, а также зарегистрировать физическими приборами. Для регистрации и исследования свойств звуковой волны применим компьютер, который в настоящее время широко применяется учёными-физиками для исследований. На компьютере установлена специальная исследовательская программа, а также подключен микрофон, который улавливает звуковые колебания (приложение 4). Посмотрите на экран. На экране вы видите графическое представление звукового колебания. Что представляет собой данный график? (синусоиду)

Проведем опыт с камертоном с пером. Резиновым молоточком ударяем по камертону. Учащиеся видят колебания вилки камертона, но звука не слышат.

Вопрос: Почему колебания есть, а звук вы не слышите?

Оказывается, ребята, человеческое ухо воспринимает звуковые диапазоны в пределах от 16 Гц доГц, это слышимый звук.

Послушайте их через компьютер и уловите изменение частот диапазона (приложение 5). Обратите внимание на то, как меняется вид синусоиды при изменении частоты звуковых колебаний (период колебаний уменьшается, а следовательно частота увеличивается).

Есть неслышимые звуки для человеческого уха. Это инфразвук (диапазон колебаний меньше 16 Гц) и ультразвук (диапазон большеГц). Схему частотных диапазонов вы видите на доске, зарисуйте её в тетрадь (приложение 5). Исследуя инфра и ультразвуки учёные открыли много интересных особенностей этих звуковых волн. Об этих интересных фактах нам расскажут ваши одноклассники (приложение 6).

4. Закрепление изученного материала.

Для закрепления изученного материала на уроке предлагаю сыграть в игру ВЕРНО-НЕВЕРНО. Я зачитываю ситуацию, а вы поднимаете табличку с надписью, ВЕРНО или НЕВЕРНО, и поясняете свой ответ.

Вопросы. 1. Верно ли, что источником звука является любое колеблющееся тело? (верно).

2. Верно ли, что в зале, заполненном публикой, музыка звучит громче, чем в пустом? (неверно, т. к. пустой зал действует как резонатор колебаний).

3. Верно ли, что комар быстрее машет крыльями, чем шмель? (верно, т. к. звук, производимый комаром выше, следовательно, выше и частота колебаний крыльев).

4. Верно ли, что колебания звучащего камертона быстрее затухают, если его ножку поставить на стол? (верно, т. к. колебания камертона передаются столу).

5. Верно ли, что летучие мыши видят с помощью звука? (верно, т. к. летучие мыши излучают ультразвук, а затем слушают отражённый сигнал).

6. Верно ли, что некоторые животные «предсказывают» землетрясение с помощью инфразвука? (верно, например, слоны чувствуют землетрясение за несколько часов и при этом крайне возбуждены).

7.Верно ли, что инфразвук вызывает психические расстройства у людей? (верно, в Марселе (Франция) рядом с научным центром была построена небольшая фабрика. Вскоре после ее пуска в одной из научных лабораторий обнаружили странные явления. Пробыв в ее помещении пару часов, исследователь становился абсолютно тупым: он с трудом решал даже несложную задачу).

И в заключение предлагаю вам из разрезанных букв, путём перестановки получить ключевые слова урока.

КВЗУ – ЗВУК

РАМТНОКЕ – КАМЕРТОН

ТРЬАКЗУВЛУ – УЛЬТРАЗВУК

ФРАКВЗУНИ - ИНФРАЗВУК

ОКЛАБЕИНЯ – КОЛЕБАНИЯ

5. Подведение итогов урока и домашнее задание.

Итоги урока. На уроке мы выяснили, что:

Что любое колеблющееся тело создаёт звук;

Звук распространяется в воздухе в виде звуковых волн;

Звуки бывают слышимые и неслышимые;

Ультразвук – это неслышимый звук, частота колебаний которого выше 20кГц;

Инфразвук – это неслышимый звук с частотой колебаний ниже 16Гц;

Ультразвук широко применяется в науке и технике.

Домашнее задание:

1. §34, упр. 29 (Пёрышкин 9 кл.)

2. Продолжить рассуждение:

Я слышу звук: а)мухи; б)упавшего предмета; в)грозы, потому что ….

Я не слышу звук: а)от взлезающего голубя; б)от парящего в небе орла, потому что…

Перейдём к рассмотрению звуковых явлений.

Мир окружающих нас звуков разнообразен - голоса людей и музыка, пение птиц и жужжание пчел, гром во время грозы и шум леса на ветру, звук проезжающих автомобилей, самолётов и других объектов.

Обрати внимание!

Источниками звука являются колеблющиеся тела.

Пример:

Закрепим в тисках упругую металлическую линейку. Если её свободную часть, длина которой подобрана определённым образом, привести в колебательное движение, то линейка будет издавать звук (рис. 1).

Таким образом, колеблющаяся линейка является источником звука.

Рассмотрим изображение звучащей струны, концы которой закреплены (рис. 2). Размытые очертания этой струны и кажущееся утолщение в середине свидетельствуют о том, что струна колеблется.

Если к звучащей струне приблизить конец бумажной полоски, то полоска будет подпрыгивать от толчков струны. Пока струна колеблется, слышен звук; остановим струну, и звук прекращается.

На рисунке 3 изображён камертон - изогнутый металлический стержень на ножке, который укреплён на резонаторном ящике.

Если по камертону ударить мягким молоточком (или провести по нему смычком), то камертон зазвучит (рис. 4).

Поднесём к звучащему камертону лёгкий шарик (стеклянную бусинку), подвешенный на нитке, - шарик будет отскакивать от камертона, свидетельствуя о колебаниях его ветвей (рис. 5).

Чтобы «записать» колебания камертона с малой (порядка \(16\) Гц) собственной частотой и большой амплитудой колебаний, можно к концу одной его ветви привинтить тонкую и узкую металлическую полоску с остриём на конце. Остриё необходимо загнуть вниз и слегка коснуться им лежащей на столе закопчённой стеклянной пластинки. При быстром перемещении пластинки под колеблющимися ветвями камертона остриё оставляет на пластинке след в виде волнообразной линии (рис. 6).

Волнообразная линия, прочерченная на пластинке остриём, очень близка к синусоиде. Таким образом, можно считать, что каждая ветвь звучащего камертона совершает гармонические колебания.

Различные опыты свидетельствуют о том, что любой источник звука обязательно колеблется, даже если эти колебания незаметны для глаза. Например, звуки голосов людей и многих животных возникают в результате колебаний их голосовых связок, звучание духовых музыкальных инструментов, звук сирены, свист ветра, шелест листьев, раскаты грома обусловлены колебаниями масс воздуха.

Обрати внимание!

Не всякое колеблющееся тело является источником звука.

Например, не издаёт звука колеблющийся грузик, подвешенный на нити или пружине. Перестанет звучать и металлическая линейка, если удлинить её свободный конец настолько, чтобы частота его колебаний стала меньше \(16\) Гц.

Человеческое ухо способно воспринимать как звук механические колебания с частотой в пределах от \(16\) до \(20000\) Гц (передающиеся обычно через воздух).

Механические колебания, частота которых лежит в диапазоне от \(16\) до \(20000\) Гц называются звуковыми.

Указанные границы звукового диапазона условны, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно с возрастом верхняя частотная граница воспринимаемых звуков значительно понижается - некоторые пожилые люди могут слышать звуки с частотами, не превышающими \(6000\) Гц. Дети же, наоборот, могут воспринимать звуки, частота которых несколько больше \(20 000\) Гц.

Механические колебания, частота которых превышает \(20 000\) Гц, называются ультразвуковыми, а колебания с частотами менее \(16\) Гц - инфразвуковыми.

Ультразвук и инфразвук распространены в природе так же широко, как и волны звукового диапазона. Их излучают и используют для своих «переговоров» дельфины, летучие мыши и некоторые другие живые существа.

Источники звука. Звуковые колебания

Человек живёт в мире звуков. Звук для человека является источником информации. Он предостерегает людей об опасности. Звук в виде музыки, пения птиц доставляет нам удовольствие. Нам приятно слушать человека с приятным голосом. Звуки важны не только для человека, но и для животных, которым хорошее улавливание звука помогает выжить.

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях, твердых телах , которые невидимы, но воспринимаемые человеческим ухом (волна воздействует на барабанную перепонку уха). Звуковая волна является продольной волной сжатия и разрежения.

Причина звука – вибрация (колебания) тел, хотя эти колебания зачастую незаметны для нашего глаза.

КАМЕРТОН - это U-образная металлическая пластина , концы которой могут колебаться после удара по ней. Издаваемый камертоном звук очень слабый и его слышно лишь на небольшом расстоянии. Резонатор - деревянный ящик, на котором можно закрепить камертон, служит для усиления звука. Излучение звука при этом происходит не только с камертона, но и с поверхности резонатора. Однако длительность звучания камертона на резонаторе будет меньше, чем без него.

Если создать вакуум, то будем ли мы различать звуки? Роберт Бойль в 1660 году поместил часы в стеклянный сосуд. Откачав воздух, он не услышал звука. Опыт доказывает, что для распространения звука необходима среда .

Звук может также распространятся в жидкой и твердой среде. Под водой хорошо слышны удары камней. Положим часы на один конец деревянной доски. Приложив ухо к другому концу, можно ясно услышать тиканье часов.

Источник звука - это обязательно колеблющиеся тела. Например, струна на гитаре в обычном состоянии не звучит, но стоит нам заставить ее совершать колебательные движения, как возникает звуковая волна.

Однако опыт показывает, что не всякое колеблющееся тело является источником звука. Например, не издает звук грузик, подвешенный на нити. Источники звука - физические тела, которые колеблются, т.е. дрожат или вибрируют с частотой от 16 до 20000 раз в секунду. Такие волны называются звуковыми. Вибрирующее тело может быть твердым, например, струна или земная кора, газообразным, например, струя воздуха в духовых музыкальных инструментах или жидким, например, волны на воде.

Колебания с частотой меньше 16 Гц называется инфразвуком . Колебания с частотой больше 20000 Гц называются ультразвуком .

Звуковая волна (звуковые колебания) – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. В результате каких-то возмущений (например, в результате колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает перепад давления в этом месте, так как воздух в процессе движения сжимается, в результате чего возникает избыточное давление, толкающее окружающие слои воздуха. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха. Так, как бы по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Этот процесс описывает механизм распространения в пространстве звуковой волны. Тело, создающее возмущение (колебания) воздуха, называют источником звука.

Привычное для всех нас понятие «звук» означает всего лишь воспринимаемый слуховым аппаратом человека набор звуковых колебаний. О том, какие колебания человек воспринимает, а какие нет, мы поговорим позднее.

Характеристики звука.

Звуковые колебания, а также вообще все колебания, как известно из физики, характеризуются амплитудой (интенсивностью), частотой и фазой.

Звуковая волна может проходить самые различные расстояния. Орудийная стрельба слышна на 10-15 км, ржание лошадей и лай собак - на 2-3 км, а шепот всего на несколько метров. Эти звуки передаются по воздуху. Но проводником звука может быть не только воздух.

Приложив ухо к рельсам, можно услышать шум приближающегося поезда значительно раньше и на большем расстоянии. Значит металл проводит звук быстрее и лучше, чем воздух. Вода тоже хорошо проводит звук. Нырнув в воду, можно отчетливо слышать, как стучат друг о друга камни, как шумит во время прибоя галька.

Свойство воды – хорошо проводить звук – широко используется для разведки в море во время войны, а также для измерения морских глубин.

Необходимое условие распространения звуковых волн – наличие материальной среды. В вакууме звуковые волны не распространяются, так как там нет частиц, передающих взаимодействие от источника колебаний.

Поэтому на Луне из-за отсутствия атмосферы царит полная тишина. Даже падение метеорита на ее поверхность не слышно наблюдателю.

В отношении звуковых волн очень важно упомянуть такую характеристику, как скорость распространения.

В каждой среде звук распространяется с разной скоростью.

Скорость звука в воздухе - приблизительно 340 м/с.

Скорость звука в воде - 1500 м/с.

Скорость звука в металлах, в стали - 5000 м/с.

В теплом воздухе скорость звука больше, чем в холодном, что приводит к изменению направления распространения звука.

Высота, тембр и громкость звука

Звуки бывают разными. Для характеристики звука вводят специальные величины: громкость, высота и тембр звука.

Громкость звука зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук. Кроме того, восприятие громкости звука нашим ухом зависит от частоты колебаний в звуковой волне. Более высокочастотные волны воспринимаются как более громкие.

За единицу громкости звука принят 1 Бел (в честь Александра Грэхема Белла, изобретателя телефона). Громкость звука равна 1 Б, если его мощность в 10 раз больше порога слышимости.

На практике громкость измеряют в децибелах (дБ).

1 дБ = 0,1Б. 10 дБ – шепот; 20–30 дБ – норма шума в жилых помещениях;

50 дБ – разговор средней громкости;

70 дБ – шум пишущей машинки;

80 дБ – шум работающего двигателя грузового автомобиля;

120 дБ – шум работающего трактора на расстоянии 1 м

130 дБ – порог болевого ощущения.

Звук громкостью свыше 180 дБ может даже вызвать разрыв барабанной перепонки.

Частота зв уковой волны определяет высоту тона. Чем больше частота колебаний источника звука, тем выше издаваемый им звук. Человеческие голоса по высоте делят на несколько диапазонов.


Звуки от разны х источников представляет собой совокупность гармонических колебаний разных частот. Составляющая наиболь шего периода (наименьшей частоты) называется основным тоном. Остальные составляющие звука - обертонами. Набор этих составляющих создает окрас ку, тембр звука. Совокупность обертонов в голосах разных людей хоть немного, но отличается, это и определяет тембр конкретно го голоса.

Согласно легенде, Пифаго р все музыкальные звуки расположил в ряд, разбив этот ряд на части – октавы, – а

октаву – на 12 частей (7 основных то нов и 5 полутонов). Всего насчитывается 10 октав, обычно при исполнении музыкальных произведений используются 7–8 октав. Звуки частотой более 3000 Гц в качестве музыкальных тонов не используются, они слишком резки и пронзительны.

Включайся в дискуссию
Читайте также
Быстрые оладушки на кефире Оладьи быстрый и простой рецепт
Национальная кухня австрии Лучшие рецепты приготовления блюд австрийской кухни
Бриошь: рецепты приготовления Булочка бриошь с начинкой