Подпишись и читай
самые интересные
статьи первым!

Условия применения формулы силы тяжести. Значение закона притяжения

Сила тяжести - это сила, с которой тело притягивается к Земле вследствие Всемирного тяготения. Сила тяжести заставляет все тела, на которые не действуют другие силы, двигаться вниз с ускорением свободного падения, g. Все тела во Вселенной притягиваются друг к другу, причем, чем больше их массы и чем ближе они расположены, тем притяжение сильнее. Чтобы вычислить силу тяжести, следует массу тела умножить на коэффициент, обозначаемый буквой g, приближенно равный 9,8Н/кг. Таким образом, сила тяжести рассчитывается по формуле

Сила тяжести приблизительно равна силе гравитационного притяжения к Земле (различие между силой тяжести и гравитационной силой обусловлено тем, что система отсчета, связанная с Землей, не вполне инерциальная).

Сила трения.

Сила трения - Сила, возникающая в месте соприкосновения тел и препятствующая их относительному переме-щению. Направление силы трения противоположно направлению движения.

Различают силу трения покоя и силу трения скольжения. Если тело скользит по какой-либо поверхности, его движению препятствует сила трения скольжения.

, где N — сила реакции опоры, a μ — коэффициент трения скольжения. Коэф-фициент μ зависит от материала и качества обработки соприкасающихся поверхностей и не зависит от веса тела. Коэффициент трения определяется опытным путем.

Сила трения скольжения всегда направлена противоположно движению тела. При изменении на-правления скорости изменяется и направление си-лы трения.

Сила трения начинает действовать на тело, когда его пытаются сдвинуть с места. Если внешняя сила F меньше произведения μN, то тело не будет сдвигаться — началу движения, как принято гово-рить, мешает сила трения покоя. Тело начнет дви-жение только тогда, когда внешняя сила F превы-сит максимальное значение, которое может иметь сила трения покоя

Трение покоя - сила трения, препятствующая возникновению движению одного тела по поверхности другого. В некоторых случаях трение полезно (без трения невозможно было бы ходить по земле человеку, жи-вотным, двигаться автомобилям, поездам и т.д.), в таких случаях трение усиливают. Но в других слу-чаях трение вредно. Например, из-за него изнаши-ваются трущиеся детали механизмов, расходуется лишнее горючее на транспорте и т.д. Тогда с трением борются, применяя смазку или заменяя скольжение на качку.

Силы трения не зависят от координат относительного расположения тел, они могут зависеть от скорости относительного движения соприкасающихся тел. Силы трения являются непотенциальными силами.

Вес и невесомость.

Вес - сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. При этом возникшие упругие силы начинают действовать на тело с результирующей P, направленной вверх, а сумма сил, приложенных к телу, становится равной нулю.


Сила тяжести прямо пропорциональна массе тела и зависит от ускорения свободного падения, которое максимально у полюсов Земли и постепенно уменьшается при движении к экватору. Сплюснутая у полюсов форма Земли и её вращение вокруг оси приводят к тому, что у экватора ускорение свободного падения приблизительно на 0,5% меньше, чем у полюсов. Поэтому вес тела, измеренный с помощью пружинных весов, будет меньше на экваторе, чем у полюсов. Вес тела на Земле может изменяться в очень широких пределах, а иногда даже исчезать.

Например, в падающем лифте наш вес будет равен 0,а мы будем находится в состоянии невесомости. Однако состояние невесомости может быть не только в кабине падающего лифта, но и на космической станции, вращающейся вокруг Земли. Вращаясь по окружности, спутник движется с центростремительным ускорением, и единственной силой, которая может дать ему это ускорение, является сила тяжести. Поэтому вместе со спутником вращаясь вокруг Земли, мы движемся с ускорением a = g, направленным к её центру. И если мы, находясь на спутнике, встали на пружинные весы, то P = 0. Таким образом, на спутнике вес всех тел равен нулю.

Почему мяч, брошенный в горизонтальном направлении (рис. 28), через некоторое время оказывается на земле? Почему камень, выпущенный из рук (рис. 29), падает вниз? Почему прыгнувший вверх человек вскоре снова оказывается внизу? У всех этих явлений одна и та же причина - притяжение Земли.
Земля притягивает к себе все тела: людей, деревья, воду, дома, Луну и т. д.

Сила притяжения к Земле называется силой тяжести . Сила тяжести всегда направлена вертикально вниз. Обозначается она так:

F T - сила тяжести.

Когда тело под действием притяжения к Земле падает вниз, на него действует не только Земля, но и сопротивление воздуха. В тех случаях, когда сила сопротивления воздуха пренебрежимо мала по сравнению с силой тяжести, падение тела называют свободным .

Для наблюдения свободного падения различных тел (например, дробинки, перышка и др.) их помещают в стеклянную трубку (трубку Ньютона), из которой откачивают воздух. Если вначале все эти предметы будут находиться на дне трубки, то после ее быстрого перевертывания они оказываются сверху, после чего начинают падать вниз (рис. 30). Наблюдая за их падением, можно заметить, что и свинцовая дробинка, и легкое перышко достигают дна трубки одновременно. Пройдя за одинаковое время один и тот же путь, эти тела с одной и той же скоростью ударяются о ее дно. Происходит это потому, что сила тяжести обладает следующим замечательным свойством: за каждую секунду она увеличивает скорость любого свободно падающего тела (независимо от его массы) всегда на одну и ту же величину .

Измерения показывают, что вблизи поверхности Земли скорость любого свободно падающего тела за каждую секунду падения возрастает на 9,8 м/с. Эту величину обозначают буквой g и называют ускорением свободного падения .

Зная ускорение свободного падения, можно найти силу, с которой Земля притягивает к себе любое, находящееся вблизи нее тело.

Чтобы определить силу тяжести, действующую на тело, надо массу этого тела умножить на ускорение свободного падения:

F T = mg .

Из этой формулы следует, что g = F T /m . Но F T измеряется в ньютонах, a m - в килограммах. Поэтому величину g можно измерять в ньютонах на килограмм:

g = 9,8 Н/кг ≈10 Н/кг.

С увеличением высоты над Землей ускорение свободного падения постепенно уменьшается. Например, на высоте 297 км оно оказывается равным не 9,8 Н/кг, а 9 Н/кг. Уменьшение ускорения свободного падения означает, что и сила тяжести по мере увеличения высоты над Землей также уменьшается. Чем дальше тело находится от Земли, тем слабее она его притягивает.

1. Что является причиной падения всех тел на землю? 2. Какую силу называют силой тяжести? 3. В каком случае падение тела называют свободным? 4. Чему равно ускорение свободного падения вблизи поверхности Земли? 5. По какой формуле находится сила тяжести? 6. Что произойдет с силой тяжести, ускорением и временем падения при увеличении массы падающего тела в 2 раза? 7. Как изменяются сила тяжести и ускорение свободного падения при удалении от Земли?
Экспериментальные задания. 1. Возьмите в руки лист бумаги и отпустите его. Пронаблюдайте за его падением. Теперь скомкайте этот лист и снова отпустите. Как изменится характер его падения? Почему? 2. Возьмите в одну руку металлический кружок (например, монету), а в другую - бумажный кружок чуть меньшего размера. Одновременно отпустите их. Одинаковое ли время они будут падать? Теперь возьмите в руку металлический кружок и сверху на него положите бумажный (рис. 31). Отпустите кружки. Почему теперь они падают одновременно?

Частным, но крайне важным для нас видом силы всемирного тяготения является сила притяжения тел к Земле . Эту силу называют силой тяжести . Согласно закону всемирного тяготения, она выражается формулой

\(~F_T = G \frac{mM}{(R+h)^2}\) , (1)

где m – масса тела, М – масса Земли, R – радиус Земли, h – высота тела над поверхностью Земли. Сила тяжести направлена вертикально вниз, к центру Земли.

  • Более точно, помимо этой силы, в системе отсчета, связанной с Землей, на тело действует центробежная сила инерции \(~\vec F_c\) , которая возникает из-за суточного вращения Земли, и равна \(~F_c = m \cdot \omega^2 \cdot r\) , где m – масса тела; r – расстояние между телом и земной осью. Если высота тела над поверхностью Земли мала по сравнению с ее радиусом, то \(~r = R \cos \varphi\) , где R – радиус Земли, φ – географическая широта, на которой находится тело (рис. 1). С учетом этого \(~F_c = m \cdot \omega^2 \cdot R \cos \varphi\) .

Силой тяжести называется сила, действующая на любое находящееся вблизи земной поверхности тело.

Она определяется как геометрическая сумма действующей на тело силы гравитационного притяжения к Земле \(~\vec F_g\) и центробежной силы инерции \(~\vec F_c\) , учитывающей эффект суточного вращения Земли вокруг собственной оси, т.е. \(~\vec F_T = \vec F_g + \vec F_c\) . Направление силы тяжести является направлением вертикали в данном пункте земной поверхности.

НО величина центробежной силы инерции очень мала по сравнению с силой притяжения Земли (их отношение составляет примерно 3∙10 -3), то обычно силой \(~\vec F_c\) пренебрегают. Тогда \(~\vec F_T \approx \vec F_g\) .

Ускорение свободного падения

Сила тяжести сообщает телу ускорение, называемое ускорением свободного падения. В соответствии со вторым законом Ньютона

\(~\vec g = \frac{\vec F_T}{m}\) .

С учетом выражения (1) для модуля ускорения свободного падения будем иметь

\(~g_h = G \frac{M}{(R+h)^2}\) . (2)

На поверхности Земли (h = 0) модуль ускорения свободного падения равен

\(~g = G \frac{M}{R^2}\) ,

а сила тяжести равна

\(~\vec F_T = m \vec g\) .

Модуль ускорения свободного падения, входящего в формулы, равен приближенно 9,8 м/с 2 .

Из формулы (2) видно, что ускорение свободного падения не зависит от массы тела. Оно уменьшается при подъеме тела над поверхностью Земли: ускорение свободного падения обратно пропорционально квадрату расстояния тела от центра Земли .

Однако если высота h тела над поверхностью Земли не превышает 100 км, то при расчетах, допускающих погрешность ≈ 1,5%, этой высотой можно пренебречь по сравнению с радиусом Земли (R = 6370 км). Ускорение свободного падения на высотах до 100 км можно считать постоянным и равным 9,8 м/с 2 .

И все же у поверхности Земли ускорение свободного падения не везде одинаково . Оно зависит от географической широты: больше на полюсах Земли, чем на экваторе. Дело в том, что земной шар несколько сплюснут у полюсов. Экваториальный радиус Земли больше полярного на 21 км.

Другой, более существенной причиной зависимости ускорения свободного падения от географической широты является вращение Земли. Второй закон Ньютона справедлив в инерциальной системе отсчета. Такой системой является, например, гелиоцентрическая система. Систему же отсчета, связанную с Землей, строго говоря, нельзя считать инерциальной. Земля вращается вокруг своей оси и движется по замкнутой орбите вокруг Солнца.

Вращение Земли и сплюснутость ее у полюсов приводит к тому, что ускорение свободного падения относительно геоцентрической системы отсчета на разных широтах различно: на полюсах g пол ≈ 9,83 м/с 2 , на экваторе g экв ≈ 9,78 м/с 2 , на широте 45° g ≈ 9,81 м/с 2 . Впрочем, в наших расчетах мы будем считать ускорение свободного падения приближенно равным 9,8 м/с 2 .

Из-за вращения Земли вокруг своей оси ускорение свободного падения во всех местах, кроме экватора и полюсов, не направлено точно к центру Земли.

Кроме того, ускорение свободного падения зависит от плотности пород, залегающих в недрах Земли. В районах, где залегают породы, плотность которых больше средней плотности Земли (например, железная руда), g больше. А там, где имеются залежи нефти, g меньше. Этим пользуются геологи при поиске полезных ископаемых.

Вес тела

Вес тела – это сила, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес.

Рассмотрим, например, тело, подвешенное к пружине, другой конец которой закреплен (рис. 2). На тело действует сила тяжести \(~\vec F_T = m \vec g\) направленная вниз. Оно поэтому начинает падать, увлекая за собой нижний конец пружины. Пружина окажется из-за этого деформированной, и появится сила упругости \(~\vec F_{ynp}\) пружины. Она приложена к верхнему краю тела и направлена вверх. Верхний край тела будет поэтому «отставать» в своем падении от других его частей, к которым сила упругости пружины не приложена. Вследствие этого и тело деформируется. Возникает еще одна сила упругости – сила упругости деформированного тела. Она приложена к пружине и направлена вниз. Вот эта сила и есть вес тела.

По третьему закону Ньютона обе эти силы упругости равны по модулю и направлены в противоположные стороны. После нескольких колебаний тело на пружине оказывается в покое. Это значит, что сила тяжести \(~m \vec g\) по модулю равна силе упругости F упр пружины. Но этой же силе равен и вес тела.

Таким образом, в нашем примере вес тела, который мы обозначим буквой \(~\vec P\) , по модулю равен силе тяжести:

\(~P = m g\) .

Второй пример . Пусть тело А находится на горизонтальной опоре В (рис. 3). На тело А действует сила тяжести \(~m \vec g\) и сила реакции опоры \(~\vec N\) . Но если опора действует на тело с силой \(~\vec N\) то и тело действует на опору с силой \(~\vec P\) , которая в соответствии с третьим законом Ньютона равна по модулю и противоположна по направлению \(~\vec N\) \[~\vec P = -\vec N\] . Сила \(~\vec P\) и есть вес тела.

Если тело и опора неподвижны или движутся равномерно и прямолинейно, т. е. без ускорения, то, согласно второму закону Ньютона,

\(~\vec N + m \vec g = 0\) .

\(~\vec N = -\vec P\) , то \(~-\vec P + m \vec g = 0\) .

Следовательно,

\(~\vec P = m \vec g\) .

Значит, если ускорение а = 0, то вес тела равен силе тяжести.

Но это не значит, что вес тела и сила тяжести, приложенная к нему, одно и то же. Сила тяжести приложена к телу, а вес приложен к опоре или подвесу . Природа силы тяжести и веса тоже различна. Если сила тяжести является результатом взаимодействия тела и Земли (сила тяготения), то вес появляется в результате совсем другого взаимодействия: взаимодействия тела А и опоры В . Опора В и тело А при этом деформируются, что приводит к появлению сил упругости. Таким образом, вес тела (как и сила реакции опоры) является частным видом силы упругости .

Вес обладает особенностями, существенно отличающими его от силы тяжести.

Во-первых, вес определяется всей совокупностью действующих на тело сил, а не только силой тяжести (так, вес тела в жидкости или воздухе меньше, чем в вакууме, из-за появления выталкивающей (архимедовой) силы). Во-вторых, вес тела, существенно зависит от ускорения, с которым движется опора (подвес).

Вес тела при движении опоры или подвеса с ускорением

Можно ли увеличить или уменьшить вес тела, не изменяя самого тела? Оказывается, да. Пусть тело находится в кабине лифта, движущегося с ускорением \(~\vec a\) (рис. 4 а, б).

Рис. 4

Согласно второму закону Ньютона

\(~\vec N + m \vec g = m \vec a\) , (3)

где N – сила реакции опоры (пола лифта), m – масса тела.

По третьему закону Ньютона вес тела \(~\vec P = -\vec N\) . Поэтому, учитывая (3), получим

\(~\vec P = m (\vec g - \vec a)\) .

Направим координатную ось Y системы отсчета, связанной с Землей, вертикально вниз. Тогда проекция веса тела на эту ось будет равна

\(~P_y = m (g_y - a_y)\) .

Так как векторы \(~\vec P\) и \(~\vec g\) сонаправлены с осью координат Y , то Р y = Р и g y = g . Если ускорение \(~\vec a\) направлено вниз (см. рис. 4, а), то a y = а , и равенство принимает следующий вид:

\(~P = m (g - a)\) .

Из формулы следует, что лишь при а = 0 вес тела равен силе тяжести. При а ≠ 0 вес тела отличается от силы тяжести. При движении лифта с ускорением, направленным вниз (например, в начале спуска лифта или в процессе его остановки при движении вверх) и по модулю меньшим ускорения свободного падения, вес тела меньше силы тяжести. Следовательно, в этом случае вес тела меньше веса того же тела, если оно находится на покоящейся или равномерно движущейся опоре (подвесе). По этой же причине вес тела на экваторе меньше, чем на полюсах Земли, так как вследствие суточного вращения Земли тело на экваторе движется с центростремительным ускорением.

Рассмотрим теперь, что произойдет, если тело движется с ускорением \(~\vec a\), направленным вертикально вверх (см. рис. 4, б). В данном случае получаем

\(~P = m (g + a)\) .

Вес тела в лифте, движущемся с ускорением, направленным вертикально вверх, больше веса покоящегося тела. Увеличение веса тела, вызванное ускоренным движением опоры (или подвеса), называется перегрузкой. Перегрузку можно оценить, найдя отношение веса ускоренно движущегося тела к весу покоящегося тела:

\(~k = \frac{m (g + a)}{m g} = 1 + \frac{a}{g}\) .

Тренированный человек способен кратковременно выдерживать примерно шестикратную перегрузку. Значит, ускорение космического корабля, согласно полученной формуле, не должно превосходить пятикратного значения ускорения свободного падения.

Невесомость

Возьмем в руки пружину с подвешенным к ней грузом, а лучше пружинные весы. По шкале пружинных весов можно отсчитать вес тела. Если рука, держащая весы, покоится относительно Земли, весы покажут, что вес тела по модулю равен силе тяжести mg . Выпустим весы из рук, они вместе с грузом начнут свободно падать. При этом стрелка весов устанавливается на нуле, показывая, что вес тела стал равным нулю. И это понятно. При свободном падении и весы и груз движутся с одинаковым ускорением, равным g . Нижний конец пружины не увлекается грузом, а сам следует за ним, и пружина не деформируется. Поэтому нет силы упругости, которая действовала бы на груз. Значит, и груз не деформируется и не действует на пружину. Вес исчез! Груз, как говорят, стал невесомым .

Невесомость объясняется тем, что сила всемирного тяготения, а значит, и сила тяжести сообщают всем телам (в нашем случае – грузу и пружине) одинаковое ускорение g . Поэтому всякое тело, на которое действует только сила тяжести или вообще сила всемирного тяготения, находится в состоянии невесомости. В таких условиях находятся свободно падающие тела, например тела в космическом корабле. Ведь и космический корабль, и тела в нем тоже находятся в состоянии длительного свободного падения. Впрочем, в состоянии невесомости, хотя и непродолжительно, находится каждый из вас, спрыгивая со стула на пол или подпрыгивая вверх.

Это же можно доказать и математически. При свободном падении тела \(~\vec a = \vec g\) и \(~P = m (g - g) = 0\) .

Литература

  1. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  2. Луцевич А.А., Яковенко С.В. Физика: Учеб. пособие. – Мн.: Выш. шк., 2000. – 495 с.
  3. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Семнадцатый век недаром называют веком великих астрономических открытий. Многолетние наблюдения Галилея, Коперника, Тихо Браге дали возможность сформировать Иоганну Кеплеру законы движения небесных тел. Для того чтобы объяснить, почему планеты находятся в бесконечном движении, что заставляет их оставаться на своей орбите и что такое сила тяжести, понадобился гений - Исаак Ньютон.

Гипотезы гения

Свои законы о движении Исаак Ньютон сформулировал не для теории, а для практического применения. Обобщая данные многолетних астрономических наблюдений и благодаря своим законам о движении, этот великий ученый смог ответить на вопрос, который ставил в тупик не одно поколение ученых: «Что удерживает планеты на своих орбитах?» Ведь до Ньютона учеными выдвигались разные предположения - от хрустальных сфер до магнитных флюидов. Благодаря первому закону Ньютона стало ясно, что для равномерного прямолинейного движения сила не нужна. Сила необходима для того, чтобы заставить планеты двигаться по криволинейной орбите. Если применить формулу силы из второго закона Ньютона, то она будет равна произведению ускорения на массу. Ньютон пришел к выводу, что ускорение должно быть равным v 2 /R. Так более легкое небесное тело, Луна например, будет вращаться вокруг более тяжелого, но никогда не станет к нему приближаться. Это можно представить себе как падение с касательной к окружности на саму окружность. В точке соприкосновения скорость может быть постоянной или равной нулю, но ускорение присутствует всегда. Постоянное движение по заданной орбите без отсутствия видимого ускорения - вот ответ Ньютона на вопрос о движении планет.

Притяжение

Так, Луна движется вокруг Земли, а Земля - вокруг Солнца, повинуясь некой силе. Гениальность Ньютона проявилась в том, что он объединил силу притяжения небесных тел с силой тяжести, которая известна каждому жителю Земли. Существует легенда, что к правильным выводам Ньютона подтолкнуло обычное яблоко, упавшее ему на голову. Притяжение яблока и Луны к Земле описывается по абсолютно одинаковым законам - сделал вывод исследователь. Свое второе название сила тяжести получила от слова «гравис», что означает «вес».

Гравитация

Обобщив законы движения планет, Ньютон выяснил, что сила их взаимодействия может быть вычислена по формуле:

Где m 1 m 2 - массы взаимодействующих тел, R - расстояние между ними, а G - некий коэффициент пропорциональности, получивший название гравитационной постоянной. Слово «гравитация» подобрано абсолютно правильно, ведь происходит оно от слова «вес». Точное число постоянной Ньютону известно не было, гораздо позже значение G установил Кавендиш. Можно видеть, что на действие силы притяжения влияют массы тел и учитывается расстояние между ними. Никакие другие факторы на силу притяжения влиять не могут.

Значение закона притяжения

Данный закон универсален и может применяться к любым двум телам, имеющим массу. В случае, когда масса одного взаимодействующего тела много больше массы другого, можно говорить о частном случае гравитационной силы, для которого имеется специальный термин "сила тяжести". Это понятие применяется для задач, вычисляющих силу притяжения на Земле или других небесных телах. Если подставить значение силы тяжести в формулу второго закона Ньютона, то получим значение F=ma. Здесь а - ускорение силы тяжести, которое заставляет тела стремиться друг к другу. В задачах, связанных с использованием ускорения свободного падения, его обычно обозначают буквой g. С помощью разработанного им интегрального исчисления Ньютон математически доказал, что сила тяжести в шаре всегда сосредоточена в центре большего тела. В паре яблоко-Земля вектор ускорения направлен к центру земли, в паре Земля-Солнце направлен к Солнцу и так далее.

Зависимости силы тяжести от широты

Сила тяжести на Земле зависит от высоты тела под поверхностью планеты и от широты, на которой проводится эксперимент. Высота тела влияет на значение R, как видно, чем дальше расстояние от поверхности Земли, тем величина g меньше. Связь силы тяжести с широтой объясняется тем, что Земля имеет форму не шара, а геоида. У полюсов она немного сплюснута. Поэтому расстояние от центра Земли до экватора и до полюса будет разным - до 10 %. Такое расхождение делает весьма неудобным расчеты, например расчеты грузов трансконтинентальных перевозок. Поэтому за основу принимают показатель силы притяжения на средних широтах 9,81 м/с 2 .

Вес тела

В быту широко применяется такое понятие, как вес тела. В физике он обозначается буквой P. Вес - это сила, с которой тело давит на опору. В бытовом понятии вес часто подменяется понятием «масса», хотя это совершенно разные величины. В зависимости от того, какое значение принимает сила тяжести, изменяется и вес тела. Например, вес свинцовой детали на Земле и Луне будет отличаться. А вот масса остается неизменной и на Земле, и на Луне. Кроме этого, в определенных случаях вес тела может быть нулевым. Вес - величина, имеющая направление, а масса - скаляр.

Но так как согласно третьему закону Ньютона действие равно противодействию, вес тела равен силе реакции опоры.

Так как силу реакции простой опоры измерить довольно трудно, то опыт можно «перевернуть», подвесив какое-либо тело на пружину и измеряя степень растяжения этой пружины. При этом сила, растягивающая пружину с грузом, будет иметь вполне логичное F=mg, где m - масса, а g - ускорение свободного падения.

Перегрузка

Если груз с пружинкой поднять вверх, то ускорение силы тяжести и ускорение подъема будут направлены в противоположные стороны. Представить это можно так: F = m(g+a). Сила тяжести, а соответственно, и его вес, возрастают.

Для увеличения веса, связанного с дополнительным ускорением, существует специальный термин - перегрузка. Действие перегрузки испытывал каждый из нас, поднимаясь на лифте или взлетая на самолете. Особенно сильную перегрузку испытывают на себе космонавты и летчики сверхзвуковых самолетов при взлете своих летательных аппаратов.

Невесомость

Когда телу придается ускорение в направлении силы тяжести, то есть вниз в нашем случае, тогда F=m(g-a). Так, вес тела становится меньше. В предельном случае, когда a=g и направлены они в разные стороны, можно говорить о нулевом весе, то есть тело падает с постоянной скоростью. Состояние, при котором вес тела является нулевым, называют невесомостью. Человек испытывает состояние невесомости в космическом корабле, когда он движется с выключенными двигателями. Невесомость - обычное состояние для космонавтов и летчиков, летающих на сверхзвуковых самолетах.

Значение силы тяжести

Без силы тяжести не происходило бы многих, кажущихся нам естественными, вещей - не сходили бы лавины с гор, не шли бы дожди, не текли бы реки. Атмосфера Земли сохраняется благодаря силе тяжести. Для сравнения, планеты с меньшей массой, такие как Луна или Меркурий, растеряли свою атмосферу очень быстро и остались беззащитными перед потоком жесткого космического излучения. Атмосфера Земли играла решающую роль при возникновении жизни на Земле, ее видоизменении и сохранении.

Кроме силы тяжести, на Земле действует сила притяжения Луны. Благодаря ее близкому (в космических масштабах) соседству на Земле существуют приливы и отливы, сдвигаются континенты, а многие биологические ритмы совпадают с лунным календарем.

Таким образом, силу тяжести нужно рассматривать не как досадную помеху, а как полезный и необходимый закон природы.

Необходимо знать точку приложения и направление каждой силы. Важно уметь определить какие именно силы действуют на тело и в каком направлении. Сила обозначается как , измеряется в Ньютонах. Для того, чтобы различать силы, их обозначают следующим образом

Ниже представлены основные силы, действующие в природе. Придумывать не существующие силы при решении задач нельзя!

Сил в природе много. Здесь рассмотрены силы, которые рассматриваются в школьном курсе физики при изучении динамики. А также упомянуты другие силы, которые будут рассмотрены в других разделах.

Сила тяжести

На каждое тело, находящееся на планете, действует гравитация Земли . Сила, с которой Земля притягивает каждое тело, определяется по формуле

Точка приложения находится в центре тяжести тела. Сила тяжести всегда направлена вертикально вниз .


Сила трения

Познакомимся с силой трения. Эта сила возникает при движении тел и соприкосновении двух поверхностей. Возникает сила в результате того, что поверхности, если рассмотреть под микроскопом, не являются гладкими, как кажутся. Определяется сила трения по формуле:

Сила приложена в точке соприкосновения двух поверхностей. Направлена в сторону противоположную движению.

Сила реакции опоры

Представим очень тяжелый предмет, лежащий на столе. Стол прогибается под тяжестью предмета. Но согласно третьему закону Ньютона стол воздействует на предмет с точно такой же силой, что и предмет на стол. Сила направлена противоположно силе, с которой предмет давит на стол. То есть вверх. Эта сила называется реакцией опоры. Название силы "говорит" реагирует опора . Эта сила возникает всегда, когда есть воздействие на опору. Природа ее возникновения на молекулярном уровне. Предмет как бы деформировал привычное положение и связи молекул (внутри стола), они, в свою очередь, стремятся вернуться в свое первоначальное состояние, "сопротивляются".

Абсолютно любое тело, даже очень легкое (например,карандаш, лежащий на столе), на микроуровне деформирует опору. Поэтому возникает реакция опоры.

Специальной формулы для нахождения этой силы нет. Обозначают ее буквой , но эта сила просто отдельный вид силы упругости, поэтому она может быть обозначена и как

Сила приложена в точке соприкосновения предмета с опорой. Направлена перпендикулярно опоре.


Так как тело представляем в виде материальной точки, силу можно изображать с центра

Сила упругости

Это сила возникает в результате деформации (изменения первоначального состояния вещества). Например, когда растягиваем пружину, мы увеличиваем расстояние между молекулами материала пружины. Когда сжимаем пружину - уменьшаем. Когда перекручиваем или сдвигаем. Во всех этих примерах возникает сила, которая препятствует деформации - сила упругости.

Закон Гука


Сила упругости направлена противоположно деформации.

Так как тело представляем в виде материальной точки, силу можно изображать с центра

При последовательном соединении, например, пружин жесткость рассчитывается по формуле

При параллельном соединении жесткость

Жесткость образца. Модуль Юнга.

Модуль Юнга характеризует упругие свойства вещества. Это постоянная величина, зависящая только от материала, его физического состояния. Характеризует способность материала сопротивляться деформации растяжения или сжатия. Значение модуля Юнга табличное.

Подробнее о свойствах твердых тел .

Вес тела

Вес тела - это сила, с которой предмет воздействует на опору. Вы скажете, так это же сила тяжести! Путаница происходит в следующем: действительно часто вес тела равен силе тяжести, но это силы совершенно разные. Сила тяжести - сила, которая возникает в результате взаимодействия с Землей. Вес - результат взаимодействия с опорой. Сила тяжести приложена в центре тяжести предмета, вес же - сила, которая приложена на опору (не на предмет)!

Формулы определения веса нет. Обозначается эта силы буквой .

Сила реакции опоры или сила упругости возникает в ответ на воздействие предмета на подвес или опору, поэтому вес тела всегда численно одинаков силе упругости, но имеет противоположное направление.



Сила реакции опоры и вес - силы одной природы, согласно 3 закону Ньютона они равны и противоположно направлены. Вес - это сила, которая действует на опору, а не на тело. Сила тяжести действует на тело.

Вес тела может быть не равен силе тяжести. Может быть как больше, так и меньше, а может быть и такое, что вес равен нулю. Это состояние называется невесомостью . Невесомость - состояние, когда предмет не взаимодействует с опорой, например, состояние полета: сила тяжести есть, а вес равен нулю!



Определить направление ускорения возможно, если определить, куда направлена равнодействующая сила

Обратите внимание, вес - сила, измеряется в Ньютонах. Как верно ответить на вопрос: "Сколько ты весишь"? Мы отвечаем 50 кг, называя не вес, а свою массу! В этом примере, наш вес равен силе тяжести, то есть примерно 500Н!

Перегрузка - отношение веса к силе тяжести

Сила Архимеда

Сила возникает в результате взаимодействия тела с жидкость (газом), при его погружении в жидкость (или газ). Эта сила выталкивает тело из воды (газа). Поэтому направлена вертикально вверх (выталкивает). Определяется по формуле:

В воздухе силой Архимеда пренебрегаем.

Если сила Архимеда равна силе тяжести, тело плавает. Если сила Архимеда больше, то оно поднимается на поверхность жидкости, если меньше - тонет.



Электрические силы

Существуют силы электрического происхождения. Возникают при наличии электрического заряда. Эти силы, такие как сила Кулона , сила Ампера , сила Лоренца , подробно рассмотрены в разделе Электричество .

Схематичное обозначение действующих на тело сил

Часто тело моделируют материальной точкой . Поэтому на схемах различные точки приложения переносят в одну точку - в центр, а тело изображают схематично кругом или прямоугольником.

Для того, чтобы верно обозначить силы, необходимо перечислить все тела, с которыми исследуемое тело взаимодействует. Определить, что происходит в результате взаимодействия с каждым: трение, деформация, притяжение или может быть отталкивание. Определить вид силы, верно обозначить направление. Внимание! Количество сил будет совпадать с числом тел, с которыми происходит взаимодействие.

Главное запомнить

1) Силы и их природа;
2) Направление сил;
3) Уметь обозначить действующие силы

Различают внешнее (сухое) и внутреннее (вязкое) трение. Внешнее трение возникает между соприкасающимися твердыми поверхностями, внутреннее - между слоями жидкости или газа при их относительном движении. Существует три вида внешнего трения: трение покоя, трение скольжения и трение качения.

Трение качения определяется по формуле

Сила сопротивления возникает при движении тела в жидкости или в газе. Величина силы сопротивления зависит от размеров и формы тела, скорости его движения и свойств жидкости или газа. При небольших скоростях движения сила сопротивления пропорциональна скорости тела

При больших скоростях пропорциональна квадрату скорости

Рассмотрим взаимное притяжение предмета и Земли. Между ними, согласно закону гравитации возникает сила

А сейчас сравним закон гравитации и силу тяжести

Величина ускорения свободного падения зависит от массы Земли и ее радиуса! Таким образом, можно высчитать, с каким ускорением будут падать предметы на Луне или на любой другой планете, используя массу и радиус той планеты.

Расстояние от центра Земли до полюсов меньше, чем до экватора. Поэтому и ускорение свободного падения на экваторе немного меньше, чем на полюсах. Вместе с тем, следует отметить, что основной причиной зависимости ускорения свободного падения от широты местности, является факт вращения Земли вокруг своей оси.

При удалении от поверхности Земли сила земного тяготения и ускорения свободного падения изменяются обратно пропорционально квадрату расстояния до центра Земли.


Включайся в дискуссию
Читайте также
Шейные позвонки человека и жирафа
Из скольких позвонков состоит шейный отдел жирафа
Упражнения по чтению гласных в четырех типах слога