Подпишись и читай
самые интересные
статьи первым!

Вывод формулы эдс самоиндукции. Импульсный генератор эдс самоиндукции

§ 46. Величина и направление э. д. с. самоиндукции

Величина возникающей в катушке э. д. с. самоиндукции прямо пропорциональна ее индуктивности и зависит от скорости изменения магнитного потока.
Если в цепи, обладающей индуктивностью L гн , ток изменяется за малое время Δt сек на малую величину ΔI а , то в такой цепи возникает э. д. с. самоиндукции е с, измеряемая в вольтах.

Знак минус в этой формуле указывает на то, что э. д. с. самоиндукции противодействует изменению тока в ней.

Пример . В катушке, обладающей индуктивностью L = 5 гн , протекает электрический ток, сила которого изменяется за 2 сек на 10 а . Вычислить, какая э. д. с. самоиндукции возникает в катушке.
Решение .

Русский ученый Э. X. Ленц доказал, что э. д. с. индукции, в том числе э. д. с. самоиндукции, всегда направлена так, что она противодействует причине, вызывающей ее . Это определение называется правилом Ленца .
Если при замыкании цепи э. д. с. батареи направлена, как показано стрелкой на рис. 45, а, то э. д. с. самоиндукции, согласно правилу Ленца, в этот момент будет иметь противоположное направление (показано двойной стрелкой), препятствуя нарастанию тока. В момент размыкания цепи (рис. 45, б), наоборот, э. д. с. самоиндукции будет иметь направление, совпадающее с э. д. с. батареи, препятствуя убыванию тока.


Следовательно, в момент замыкания цепи, обладающей индуктивностью, э. д. с. на зажимах цепи уменьшается на величину возникающей э. д. с. самоиндукции.
Обозначив напряжение источника тока U , величину э. д. с. самоиндукции е с, а результирующее напряжение U р, получим:

U p = U - е с. (45)

В момент размыкания цепи результирующее напряжение увеличивается:

U p = U + е с. (46)

Э. д. с. самоиндукции в электрических цепях может во много раз превосходить напряжение источника тока. В связи с этим при размыкании цепей, обладающих большой индуктивностью, происходит пробой воздушного промежутка между контактами рубильников и выключателей и образуется искра или дуга, от которой контакты обгорают и частично расплавляются. Кроме того, э. д. с. самоиндукции может пробить изоляцию проводов катушки.
Для наблюдения возникновения э. д. с. и тока самоиндукции в момент размыкания цепи выполним такой опыт (рис. 46).

При замыкании цепи ток в точке А разветвляется. Одна его часть пройдет по виткам катушки в лампу Л 1 а другая часть - через реостат в лампу Л 2 . При этом лампа Л 2 мгновенно вспыхнет, тогда как нить лампы Л 1 накалится постепенно. При размыкании цепи лампа Л 2 сразу погаснет, а лампа Л 1 на мгновение ярко вспыхнет и затем погаснет. Наблюдаемое явление связано с тем, что при замыкании цепи магнитное поле, создаваемое вокруг катушки L , пересекает «собственные витки» и возбуждает в ней э. д. с. и ток самоиндукции, который препятствует прохождению основного тока. По этой причине нить лампы Л 1 накаливается при замыкании цепи медленнее нити лампы Л 2 . При размыкании цепи в катушке также создается э. д. с. и ток самоиндукции, но в данном случае направление э. д. с. самоиндукции совпадает с направлением основного тока. Это и служит причиной того, что нить лампы Л 1 на мгновение ярко вспыхивает и гаснет позже лампы Л 2 , в цепь которой катушка не включена.

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Термин индукция в электротехнике означает возникновение тока в электрической замкнутой цепи, если она находится в изменяющемся Открыта всего-то двести лет назад Майклом Фарадеем. Значительно раньше это мог бы сделать Андре Ампер, проводивший похожие опыты. Он вставлял в катушку металлический стержень, а затем, вот незадача, шел в другую комнату посмотреть на стрелку гальванометра - а вдруг она шевельнется. А стрелка исправно делала свое дело - отклонялась, но пока Ампер странствовал по комнатам - возвращалась на нулевую отметку. Вот так явление самоиндукции дожидалось еще добрый десяток лет, пока катушка, прибор и исследователь окажутся одновременно в нужном месте.

Главным моментом этого эксперимента было то, что ЭДС индукции возникает только тогда, когда магнитное поле, проходящее через замкнутый контур, изменяется. А вот менять его можно как угодно - или изменять величину самого магнитного поля, или просто перемещать источник поля относительно того же замкнутого контура. ЭДС, которая при этом возникает, назвали “ЭДС взаимоиндукции”. Но это было только начало открытий в области индукции. Еще более удивительным было явление самоиндукции, которое открыл примерно в то же время. В его опытах было обнаружено, что катушки не только индуцировало ток в другой катушке, но и при изменении тока в этой катушке, наводило в ней же дополнительную ЭДС. Вот ее-то и назвали ЭДС самоиндукции. В большое интерес представляет направление тока. Оказалось, что в случае с ЭДС самоиндукции ее ток направлен против своего “родителя” - тока, обусловленного основной ЭДС.

А можно наблюдать явление самоиндукции? Как говорится, нет ничего проще. Соберем две первая - последовательно включенная катушка индуктивности и лампочка, а вторая - только лампочка. Подключим их к аккумулятору через общий выключатель. При включении можно видеть, что лампочка в цепи с катушкой загорается “нехотя”, а вторая лампочка, более быстрая “на подъем”, включается мгновенно. Что происходит? В обеих цепях после включения начинает протекать ток, причем он изменяется от нуля до своего максимума, а как раз изменения тока и дожидается катушка индуктивности, которая порождает ЭДС самоиндукции. Есть ЭДС и замкнутая цепь - значит, есть и ее ток, но направлен он противоположно основному току цепи, который, в конце концов, достигнет максимального значения, определяемого параметрами цепи, и перестанет расти, а раз нет изменения тока - нет и ЭДС самоиндукции. Все просто. Аналогичная картина, но с “точностью до наоборот”, наблюдается при выключении тока. Верная своей “вредной привычке” противодействовать любому изменению тока, ЭДС самоиндукции поддерживает его протекание в цепи после отключения питания.

Сразу же стал вопрос - в чем заключается явление самоиндукции? Было установлено, что на ЭДС самоиндукции влияет скорость изменения тока в проводнике, и можно записать:

Отсюда видно, что ЭДС самоиндукции Е прямопропорциональна скорости изменения тока dI/dt и коэффициенту пропорциональности L, названному индуктивностью. За свой вклад в исследование вопроса, в чем состоит явление самоиндукции, Джордж Генри был вознагражден тем, что его имя носит единица измерения индуктивности — генри (Гн). Именно индуктивность цепи протекания тока определяет явление самоиндукции. Можно представить, что индуктивность - это некое “хранилище” магнитной энергии. В случае увеличения тока в цепи электрическая энергия преобразуется в магнитную, задерживает рост тока, а при уменьшении тока магнитная энергия катушки преобразуется в электрическую и поддерживает ток в цепи.

Наверное, каждому приходилось видеть искру при выключении вилки из розетки - это самый распространенный вариант проявления ЭДС самоиндукции в реальной жизни. Но в быту размыкаются токи максимум 10-20 А, а время размыкания порядка 20 мсек. При индуктивности порядка 1 Гн ЭДС самоиндукции в этом случае будет равна 500 В. Казалось бы, что вопрос, в чем состоит явление самоиндукции, не так и сложен. А на самом деле, ЭДС самоиндукции представляет собой большую техническую проблему. Суть в том, что при разрыве цепи, когда контакты уже разошлись, самоиндукция поддерживает протекание тока, а это приводит к выгоранию контактов, т.к. в технике коммутируются цепи с токами в сотни и даже тысячи ампер. Здесь зачастую речь идет об ЭДС самоиндукции в десятки тысяч вольт, а это требует дополнительного решения технических вопросов, связанных с перенапряжениями в электрических цепях.

Но не все так мрачно. Бывает, что эта вредная ЭДС очень даже полезна, например, в системах зажигания ДВС. Такая система состоит из катушки индуктивности в виде автотрансформатора и прерывателя. Через первичную обмотку пропускается ток, который выключается прерывателем. В результате обрыва цепи возникает ЭДС самоиндукции в сотни вольт (при этом аккумулятор дает всего 12В). Дальше это напряжение дополнительно трансформируется, и на свечи зажигания поступает импульс больше 10 кВ.

9.4. Явление электромагнитной индукции

9.4.3. Среднее значение электродвижущей силы самоиндукции

При изменении потока, сцепленного с замкнутым проводящим контуром, через площадь, ограниченную данным контуром, в нем появляется вихревое электрическое поле и течет индукционный ток - явление электромагнитной самоиндукции.

Модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывают по формуле

〈 | ℰ i s | 〉 = | Δ Ф s | Δ t ,

где ΔФ s - изменение магнитного потока, сцепленного с контуром, за время Δt .

Если сила тока в контуре изменяется с течением времени I = I (t ), то

∆Ф s = L ∆I ,

где L - индуктивность контура; ΔI - изменение силы тока в контуре за время Δt ;

〈 | ℰ i s | 〉 = L | Δ I | Δ t ,

где ΔI /Δt - скорость изменения силы тока в контуре.

Если индуктивность контура изменяется с течением времени L = L (t ), то

  • изменение потока, сцепленного с контуром, определяется формулой

∆Ф s = ∆LI ,

где ΔL - изменение индуктивности контура за время Δt ; I - сила тока в контуре;

  • модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывается по формуле

〈 | ℰ i s | 〉 = I | Δ L | Δ t .

Пример 16. В замкнутом проводящем контуре с индуктивностью 20 мГн течет ток силой 1,4 А. Найти среднее значение ЭДС самоиндукции, возникающей в контуре, при равномерном уменьшении в нем силы тока на 20 % за 80 мс.

Решение . Появление ЭДС самоиндукции в контуре вызвано изменением потока, сцепленного с контуром, при изменении в нем силы тока.

Поток, сцепленный с контуром, определяется формулами:

  • при силе тока I 1

Ф s 1 = LI 1 ,

где L - индуктивность контура, L = 20 мГн; I 1 - первоначальная сила тока в контуре, I 1 = 1,4 А;

  • при силе тока I 2

Ф s 2 = LI 2 ,

где I 2 - конечная сила тока в контуре.

Изменение потока, сцепленного с контуром, определяется разностью:

Δ Ф s = Ф s 2 − Ф s 1 = L I 2 − L I 1 = L (I 2 − I 1) ,

где I 2 = 0,8I 1 .

Среднее значение ЭДС самоиндукции, возникающей в контуре, при изменении в нем силы тока:

〈 ℰ s i 〉 = | Δ Ф s Δ t | = | L (I 2 − I 1) Δ t | = | − 0,2 L I 1 Δ t | = 0,2 L I 1 Δ t ,

где ∆t - интервал времени, за который происходит уменьшение силы тока, ∆t = 80 мс.

Расчет дает значение:

〈 ℰ s i 〉 = 0,2 ⋅ 20 ⋅ 10 − 3 ⋅ 1,4 80 ⋅ 10 − 3 = 70 ⋅ 10 − 3 с = 70 мВ.

При изменении силы тока в контуре в нем возникает ЭДС самоиндукции, среднее значение которой равно 70 мВ.

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Включайся в дискуссию
Читайте также
Развитие туризма в алтайском крае к презентации
Инвестиции в туризме Сергей бачин, инвестор
Международное исследование UHY: доля туризма в ВВП разных стран Доля туризма в мировом ввп