Подпишись и читай
самые интересные
статьи первым!

Что такое ток: основные характеристики и понятия. Применение электрического тока

Первые открытия, связанные с работой электричества, начались в VII веке до нашей эры​. Философ Древней Греции Фалес Милетский выявил, что при трении янтаря о шерсть она впоследствии способна притягивать легковесные предметы. С греческого «электричество» переводится как «янтарность». В 1820 г. Андре-Мари Ампером был установлен закон постоянного тока. В дальнейшем величину силы тока или то, в чём измеряется электрический ток, стали обозначать в амперах.

Значение термина

Понятие электрического тока можно найти в любом учебнике по физике. Электроток - это упорядоченное движение электрозаряженных частиц по направлению. Чтобы понять простому обывателю, что представляет собой электрический ток, следует воспользоваться словарём электрика. В нём термин расшифровывается как движение электронов по проводнику или ионов по электролиту.

В зависимости от движения электронов или ионов внутри проводника различают следующие виды токов:

  • постоянный;
  • переменный;
  • периодический или пульсирующий.

Основные величины измерения

Сила электрического тока - основной показатель, которым пользуются электрики в своей работе. От величины заряда, который протекает по электрической цепочке за установленный промежуток времени, зависит сила действия электрического течения. Чем большее количество электронов перетекло от одного начала источника к концу, тем больше будет перенесённый электронами заряд.

Величина, которая измеряется отношением электрического заряда, протекающего сквозь поперечное сечение частиц в проводнике, ко времени его прохождения. Заряд замеряется в кулонах, время - в секундах, а одна единица силы течения электричества определяется отношением заряда ко времени (кулона к секунде) или в амперах. Определение электрического тока (его силы) происходит путём последовательного включения двух клемм в электроцепь.

При работе электротока движение заряженных частиц совершается с помощью электрического поля и зависит от силы движения электронов. Величина, от которой зависит работа электротока, называется напряжением и определяется отношением работы тока в конкретной части цепи и заряда, проходящего по этой же части. Единица измерения вольт замеряется вольтметром, когда две клеммы прибора подключаются к цепи параллельно.

Величина электрического сопротивления имеет прямую зависимость от типа используемого проводника, его длины и поперечного сечения. Она измеряется в омах.

Мощность определяется отношением работы движения токов ко времени, когда происходила эта работа. Замеряют мощность в ваттах.

Такая физическая величина, как ёмкость, определяется отношением заряда одного проводника к разнице потенциалов между этим же проводником и соседним. Чем меньше напряжение при получении электрозаряда проводниками, тем больше их ёмкость. Измеряют её в фарадах.

Величина работы электричества на определённом промежутке цепочки находится с помощью произведения силы тока, напряжения и временного отрезка, при котором осуществлялась работа. Последняя замеряется в джоулях. Определение работы электротока происходит с помощью счётчика, который соединяет показания всех величин, а именно напряжения, силы и времени.

Техника электробезопасности

Знание правил электробезопасности поможет предупредить аварийную ситуацию и уберечь здоровье и жизнь человека. Так как электричество имеет свойство нагревать проводник, то всегда существует возможность возникновения опасной для здоровья и жизни ситуации. Для обеспечения безопасности в быту необходимо придерживаться следующих простых, но важных правил:

  1. Изоляция сети всегда должна быть исправной, чтобы избежать перегрузок или возможности возникновения коротких замыканий.
  2. Влага не должна попадать на электроприборы, провода, щитки и т. д. Также влажная среда провоцирует появление коротких замыканий.
  3. Обязательно следует делать заземление для всех электроустройств.
  4. Необходимо избегать перегрузки электропроводки, так как существует риск воспламенения проводов.

Техника безопасности при работе с электричеством предполагает использование прорезиненых перчаток, рукавиц, ковриков, разрядных устройств, приборов заземления рабочих участков, выключателей-автоматов или предохранителей с тепловой и токовой защитой.

Опытные электрики при возникновении вероятности поражения электричеством работают одной рукой, а вторая находится в кармане. Таким образом прерывается цепь «рука-рука» в случае непроизвольного прикосновения к щитку или другому заземлённому оборудованию. При воспламенении оборудования, подключённого к сети, ликвидируют огонь исключительно порошковыми или углекислотными тушителями.

Применение электрического тока

У электрического тока множество свойств, которые позволяют применять его почти во всех сферах человеческой деятельности. Способы использования электротока:

Электричество сегодня является наиболее экологически чистым видом энергии. В условиях современной экономики развитие электроэнергетики имеет планетарное значение. В будущем при возникновении сырьевого дефицита электричество займёт лидирующие позиции в качестве неисчерпаемого источника энергии.

Условия появления тока

Современная наука создала теории, объясняющие природные процессы. В основе многих процессов лежит одна из моделей строения атома, так называемая планетарная модель. В соответствии с этой моделью атом состоит из положительно заряженного ядра и отрицательно заряженного облака из электронов, окружающего ядро. Разные вещества, состоящие из атомов, в большинстве своём стабильны и неизменны по своим свойствам при неизменных условиях окружающей среды. Но в природе существуют процессы, которые могут изменять стабильное состояние веществ и вызывать в этих веществах явление, называемое электрическим током .

Таким основным для природы процессом является трение. Многие знают, что если волосы расчёсывать расчёской изготовленной из некоторых видов пластика, или носить одежду из некоторых видов ткани, возникает эффект прилипания. Волосы притягиваются и прилипают к расчёске, то же самое происходит и с одеждой. Объясняется этот эффект трением, которое нарушает стабильность материала расчёски или ткани. Электронное облако может смещаться относительно ядра или частично разрушаться. И в результате вещество приобретает электрический заряд, знак которого определяется строением этого вещества. Электрический заряд, возникающий в результате трения, называют электростатическим.

Получается пара из заряженных веществ. Каждое из веществ имеет определённый электрический потенциал. На пространство между двумя заряженными веществами действует электрическое, в данном случае электростатическое поле. Эффективность электростатического поля зависит от величин потенциалов и определяется как разность потенциалов или напряжение.

  • Когда возникает напряжение, в пространстве между потенциалами появляется направленное движение заряженных частиц веществ – электрический ток.

Где течёт электрический ток?

При этом потенциалы будут уменьшаться, если трение прекратится. И, в конце концов, потенциалы исчезнут, а вещества вновь обретут стабильность.

Но если процесс формирования потенциалов и напряжения будет продолжаться в сторону их увеличения, ток также будет увеличиваться соответственно свойствам веществ, заполняющих пространство между потенциалами. Наиболее наглядной демонстрацией такого процесса является молния. Трение восходящего и нисходящего потоков воздуха друг о друга приводит к появлению огромного напряжения. В результате один потенциал формируется восходящими потоками в небе, а другой нисходящими потоками в земле. И, в конце концов, из-за свойств воздуха возникает электроток в виде молнии.

  • Первой причиной появления электрического тока является напряжение.
  • Второй причиной появления электротока является пространство, в котором действует напряжение – его размеры и чем оно заполнено.

Напряжение появляется не только от трения. Другие физические и химические процессы, которые нарушают уравновешенность атомов вещества, так же приводят к появлению напряжения. Напряжение возникает только как результат взаимодействия либо

  • одного вещества с другим веществом;
  • одного или нескольких веществ с полем или излучением.

Напряжение может появиться от:

  • химической реакции, которая происходит в веществе, как например, во всех батареях и аккумуляторах, а также во всех живых существах;
  • электромагнитного излучения, как например, в солнечных батареях и тепловых электрогенераторах;
  • электромагнитного поля, как например, во всех динамо-машинах.

Электроток имеет природу соответствующую веществу, в котором он течёт. Поэтому различается:

  • в металлах;
  • в жидкостях и газах;


  • в полупроводниках

В металлах электроток состоит только из электронов, в жидкостях и газах – из ионов, в полупроводниках – из электронов и «дырок».

Постоянный и переменный ток

Напряжение относительно своих потенциалов, знаки которых остаются неизменными, может изменяться только по величине.

  • При этом появляется постоянный или импульсный электрический ток.

Электроток зависит от длительности этого изменения и свойств пространства, заполненного веществом между потенциалами.

  • Но если знаки потенциалов изменяются и это приводит к изменению направления тока, он называется переменным , как и напряжение, его определяющее.

Жизнь и электрический ток

Для количественных и качественных оценок электрического тока в современной науке и технике используются определённые законы и величины. Основными законами являются:

  • закон Кулона;
  • закон Ома.

Шарль Кулон в 80-х годах 18 века определил появление напряжения, а Георг Ом в 20-х годах 19 века определил появление электротока.

В природе и человеческой цивилизации он используется в основном как переносчик энергии и информации, а тема его изучения и использования так же необъятна, как и сама жизнь. Например, исследования показали, что все живые организмы живут потому, что мышцы сердца сокращаются от воздействия импульсов электротока, вырабатываемого в организме. Все прочие мышцы работают аналогично. Клетка при делении использует информацию на основе электротока сверх высоких частот. Перечень подобных фактов с уточнениями можно продолжить в объёме книги.

Уже много сделано открытий, связанных с электрическим током, и ещё больше предстоит сделать. Поэтому, с появлением новых инструментов для исследований появляются новые законы, материалы и прочие результаты для практического использования данного явления.

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

Основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза (рис.9.10).

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду ), отрицательные ионы – к положительному электроду (аноду ). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией .

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году.

Первый закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе: масса m вещества, выделившегося на электроде, прямо пропорциональна заряду q, прошедшему через электролит:

m = kq = kIt ,

где k электрохимический эквивалент вещества :

F = eN A = 96485 Кл / моль. – постоянная Фарадея.

Второй закон Фарадея электрохимические эквиваленты различных веществ относятся их химические эквиваленты :

Объединенный закон Фарадея для электролиза:

Электролитические процессы классифицируются следующим образом:

получение неорганических веществ (водорода, кислорода, хлора, щелочей и т.д.);

получение металлов (литий, натрий, калий, бериллий, магний, цинк, алюминий, медь и т.д.);

очистка металлов (медь, серебро,…);

получение металлических сплавов;

получение гальванических покрытий;

обработка поверхностей металлов (азотирование, борирование, электрополировка, очистка);

получение органических веществ;

электродиализ и обессоливание воды;

нанесение пленок при помощи электрофореза.

Практическое применение электролиза

Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов. Электролиз может осуществляться с растворимыми анодами – процесс электрорафинирования или с нерастворимыми – процесс электроэкстракции. Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах. В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки.

Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др. Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3 (рис.9.11). При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.

На рисунке 9.11 приведена схема электролитического рафинирования меди.

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника подразделяется на гальваностегиюи гальванопластику .

Гальваностегия (от греч. покрывать) – это электроосаждение на поверхность металла другого металла , который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера (рис. 9.12).

Способом гальваностегии можно покрыть деталь тонким слоем золота или серебра, хрома или никеля. С помощью электролиза можно наносить тончайшие металлические покрытия на различных металлических поверхностях. При таком способе нанесения покрытий, деталь используют в качестве катода, помещенного в раствор соли того металла, покрытие из которого необходимо получить. В качестве анода используется пластинка из того же металла.

Рис. 9.12 Рис. 9.13
Рекомендуем просмотреть демонстрацию "Гальванопластика ".

Гальванопластика получение путем электролиза точных, легко отделяемых металлических копий значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами (рис. 9.13).

С помощью гальванопластики изготовляют бюсты, статуи и т. д. Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование "накладного" слоя никеля, серебра, золота и т. д.).

Электрические и электромагнитные явления.

1 вариант. Обязательная часть.

1. Как обозначают электрический заряд? а) t ; б) q ; в) I ; г) s ;

2.Кусочек шелка потерли о стекло. Одно или оба тела при этом наэлектризовались? Какие заряды появились на кусочке шелка и на стекле? А) Оба, на шелке- отрицательный, а на стекле – положительный; б) оба, на кусочке шелка- положительный. На стекле – отрицательный; в) Отрицательный заряд приобретает кусочек шелка, а стекло- нет; г) положительный заряд приобретает только стекло.

3. Определите заряд второго тела. А) отрицательный; б) положительный; в) 0

4. Атом состоит из: а)протонов и нейтронов; б) электронов, протонов в) нейтронов и электронов; г) электронов и ядра.

5 . Из каких частиц состоит ядро? а)электронов и протонов; б) протонов и нейтронов; в)электронов и нейтронов;

в) молекул и электронов.

6. Какими электрическими зарядами обладают электрон и протон? а) электрон- отрицательным, протон- положительным; б) электрон- положительным, протон- отрицательным; в)электрон и протон – положительным; г) электрон и протон- отрицательным;

7. Сколько электронов в нейтральном атоме водорода? а)1; б) 2; в) 3; г) 0;

8.Что представляет собой электрический ток? а) Направленное движение заряженных частиц; б) беспорядочное движение заряженных частиц; в)направленное движение атомов; г)направленное движение молекул;

9. Сила тока, проходящая через нить накала лампы, 0,3А, напряжение на лампы 6 В. Каково электрическое сопротивление нити лампы? а) 2 Ом; б) 1,8 Ом; в) 20 Ом; г) 0.5 Ом;

10. Какой длины надо взять медную проволоку площадью поперечного сечения 0,5 мм 2 , чтобы сопротивление было равно 34 Ом?

11.Какова мощность электрического тока в электрической плите при напряжении 200 В и силе тока 2А?

а) 100 Вт; б) 400Вт; в) 0,01 Вт; г) 1 кВт;

12. Какая физическая величина вычисляется по формуле Q=I 2 R t? а) мощность электрического тока; б) количество теплоты, выделяющееся на участке электрической цепи; в) электрический заряд, протекающий в цепи за время t ; г) количество теплоты, выделяющееся в единицу времени.

13. Определите стоимость израсходованной энергии при пользовании телевизором в течение 2 часов. Мощность телевизора равна 100 Вт, а стоимость 1 кВтч равна 80 копеек.

14. Имеется стальной магнит. Если распилить пополам между А и В, то каким магнитным свойством будет обладать конец В?

N A B S а) будет северным магнитным полюсом; б) будет южным магнитным полюсом;

в) не будет обладать магнитным полем; г) сначала будет северным, а потом

южным магнитным полюсом.

15. На рисунке представлена схема электрической цепи. Каково общее сопротивление цепи?

16. Длину проводника уменьшили в 2 раза. Как изменится сопротивление

2 Ом проводника? а) увеличится в 2 раза; б) уменьшится в 2 раза; в) не изменится

г) уменьшится в 4 раза;

17. Алюминиевая и медная проволоки имеют равные длины и одинаковые

площади сечении. Какая из проволок имеет большее сопротивление?

2 Ом а) алюминиевый проводник; б) медный; в) одинаковые сопротивления;

г) недостаточно данных, невозможно узнать

18.Как изменится сила тока на участке цепи, если при неизменном сопро-

2 Ом тивлении увеличить напряжение на его концах в 2 раза?

а) уменьшится в 2 раза; б) увеличится в 2 раза; в) не изменится;

г) уменьшится в 4 раза;

. Дополнительная часть.

19. Как включаются плавкие предохранители, отключающие при перегрузках электрическую сеть квартиры, последовательно или параллельно электрическим приборам, включаемым в квартире? Ответ обосновать.

20. Общее сопротивление последовательно включенных двух ламп сопротивлением 15 Ом каждая и реостата равны 54 Ом. Определите сопротивление реостата.

21.Рассчитайте силу тока, проходящего по медному проводу длиной 100м и площадью поперечного сечения 0,5 мм 2 при напряжении 6,8 В.

Электрические и электромагнитные явления. 11 вариант.

Обязательная часть.1. В каких единицах измеряют заряд (количество электричества) ? а) в Амперах; б) в Омах;

В) в Вольтах; г) в Кулонах;

2 . Определите заряд второго тела. а) только положительный;

б) только отрицательный;

г) может быть отрицательным или

+ ? положительным; От этого ничего

не изменится.

3.Атом какого химического элемента содержит 15 электронов? а) кислород; б) фосфор; в) углерод; г) фтор;

    У какого атома общий заряд всех электронов равен q= - 1.6 10 -19 Кл? а) кислород; б) азот; в) водород; г) иод;

5..Какими электрическими зарядами обладают электрон и нейтрон? а) электрон- отрицательным, нейтрон – положительным; б) электрон- положительным, нейтрон- отрицательным; в) электрон и нейтрон- отрицательным; г) электрон – отрицательным, нейтрон не имеет заряда.

6. Чему равен заряд ядра атома гелия?. а) +4; б) -4; в) +2; г) -2;

7. От атома гелия отделился один электрон. Как называется образовавшаяся частица? Каков ее заряд?

а) положительный ион; б) отрицательный ион; в) протон; г) нейтрон;

8. За направление тока принято: 1) то направление, в котором должны были бы двигаться положительные заряды; 2) то направление, в котором должны были бы двигаться отрицательно заряженные частицы; 3) направление движения электронов; 4) направление от положительного полюса источника к отрицательному. а) 1; б) 2; в) 3; г)1и 4;

9. Каково напряжение на участке электрической цепи сопротивлением 20 Ом при силе тока в цепи 2 А?

А) 40 В; б) 4 В; в) 10 В; г) 0,01 В;

10 .Чему равно сопротивление алюминиевой проволоки длиной 80 см и площадью поперечного сечения 0,2 мм 2 ?

11. Два проводника сделанные из меди имеют одинаковые длины, причем площадь сечения первого проводника больше в 2 раза. У какого проводника сопротивление больше? а) сопротивления одинаковы; б) у первого больше в 2 раза; в) у первого меньше в 2 раза; г) у второго больше в 4 раза;

12 . Напряжение на концах участка уменьшили в 4 раза. Как изменится сила тока на этом участке? А) не изменится;

б) увеличится в 4 раза; в) уменьшится в 4 раза; г) уменьшится в 2 раза;

13. По какой формуле вычисляется мощность электрического тока? а ) A = IU t; б ) P =I t; в ) Q =I 2 R t; г )I =;

14. Какое количество теплоты выделяется в проводнике сопротивлением 20 Ом за 10 мин при силе тока в цепи 2 А?

а) 480 кДж; б) 48 кДж; в) 24 кДж; г) 400 Дж;

15 . Как называется единица измерения напряжения? А) Ватт; б) Ампер; в) Вольт; г) Джоуль;

16. В электрическую цепь включены 4 электрические лампы. 1

Какие из них включены последовательно?

а) только 1 и 2; б) только 1 и 4; в) все;

г) последовательно включенных ламп нет;

17. К одному из полюсов магнитной стрелки приблизили иголку. 2

Полюс стрелки притянулся к иголке. Может ли это служить

доказательством того, что игла была намагничена?

а) да; б) нет; 3

18. Реостат включен в цепь так, как показано на схеме. Как будут

изменяться показания амперметра при передвижении ползунка реостата

вправо?

а) увеличатся;

б) уменьшатся;

в) не изменится;

г) станут равными 0;

Дополнительная часть. 19 . Алюминиевая и медная проволоки имеют равные массы и одинаковые площади поперечных сечений. Какая из проволок имеет большее сопротивление?

20. В спирали электронагревателя, изготовленного из никелиновой проволоки площадью поперечного сечения 0,1 мм 2 , при напряжении 220 В сила тока 4 А. Какова длина проволоки составляющей спираль?

21.Почему вместо перегоревшей пробки предохранителя в патрон нельзя вставлять какой- нибудь металлический предмет, например гвоздь?

Электричество. (зачет №1)

1.

13 Что такое энергия связи?

15 Закон сохранения заряда.

28. Что показывает удельное сопротивление? Обозначение. Единица измерения.

29. Что такое резистор? Обозначение. Что такое реостат? Чем они отличаются?

30 Сформулируйте закон Ома.

31 Что такое короткое замыкание?

Электричество. (зачет №1)

1. Одно или оба тела электризуются при трении?

2. Какие два рода электрических зарядов существуют в природе?

3. Как называется единица заряда?

4. Какие вещества называются проводниками? Диэлектриками? Что такое заземление? На каком свойстве оно основано?

5. Можно ли уменьшать заряд бесконечно?

6. Какой заряд называют элементарным?

7. Кто и когда открыл электрон? Как заряжен электрон?

8 Кто и когда открыл строение атома? Как устроен атом?

9.Чем отличаются альфа-лучи, бета-лучи, гамма-лучи?

10. Чем отличаются друг от друга атомы разных химических элементов?

11. Что представляют собой положительные и отрицательные ионы?

12.Из каких частиц состоит атомное ядро?

13 Что такое энергия связи?

14.Какие заряженные частицы переносят заряд по проводнику? (металлу)

15 Закон сохранения заряда.

16. Что такое электрическое поле?.

17. Перечислите основные свойства электрического поля.

18. В каком случае электрическое поле увеличивает скорость частицы и в каком уменьшает ее?

19. Что такое электрический ток? Какие условия необходимы для существования тока?

20 Перечислите действия, оказываемые электрическим током.

21. Источник тока. Кто и когда изобрел первый источник тока?

22. Из чего состоит электрическая цепь?

23. Какое направление выбирают за направление тока?

24.Что такое сила тока? Формула. Единица измерения. Как называется прибор для измерения силы тока? Как включают в цепь амперметр?

25. Что такое электрическое напряжение? Обозначение. Единица измерения. Формула.

26.Как называется прибор для измерения напряжения? Как включают в цепь вольтметр?

27. Что характеризует и как обозначается электрическое сопротивление? Формула. Единица измерения?

Представляет электрическую установку. Что в ней является источником тока , а что ...

Что такое электрический ток

Направленное движение электрически заряженных частиц под воздействием . Такими частицами могут являться: в проводниках – электроны , в электролитах – ионы (катионы и анионы), в полупроводниках – электроны и, так называемые, "дырки" ("электронно-дырочная проводимость"). Также существует "ток смещения ", протекание которого обусловлено процессом заряда емкости, т.е. изменением разности потенциалов между обкладками. Между обкладками никакого движения частиц не происходит, но ток через конденсатор протекает.

В теории электрических цепей за ток принято считать направленное движение носителей заряда в проводящей среде под действием электрического поля.

Током проводимости (просто током) в теории электрических цепей называют количество электричества, протекающего за единицу времени через поперечное сечение проводника: i=q/t , где i - ток. А; q = 1,6· 10 9 - заряд электрона, Кл; t - время, с.

Это выражение справедливо для цепей постоянного тока. Для цепей переменного тока применяют так называемое мгновенное значение тока, равное скорости изменения заряда во времени: i(t)= dq/dt .

Электрический ток возникает тогда, когда на участке электрической цепи появляется электрическое поле, или разность потенциалов между двумя точками проводника. Разность потенциалов между двумя точками называют напряжением или падением напряжения на этом участке цепи .


Вместо термина «ток» («величина тока») часто применяется термин «сила тока». Однако последний нельзя назвать удачным, так как сила тока не есть какая-либо сила в буквальном смысле этого слова, а только интенсивность движения электрических зарядов в проводнике, количество электричества, проходящего за единицу времени через площадь поперечного сечения проводника.
Ток характеризуется , которая в системе СИ измеряется в амперах (А), и плотностью тока , которая в системе СИ измеряется в амперах на квадратный метр.
Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (с) заряда электричества величиной в один кулон (Кл):

1А = 1Кл / с.

В общем случае, обозначив ток буквой i, а заряд q, получим:

i = dq / dt.

Единица тока называется ампер (А) . Ток в проводнике равен 1 А, если через поперечное сечение проводника за 1 сек проходит электрический заряд, равный 1 кулон.

Если вдоль проводника действует напряжение, то внутри проводника возникает электрическое поле. При напряженности поля Е на электроны с зарядом е действует сила f = Ее. Величины f и Е векторные. В течение времени свободного пробега электроны приобретают направленное движение наряду с хаотическим. Каждый электрон имеет отрицательный заряд и получает составляющую скорости, направленную противоположно вектору Е (рис. 1). Упорядоченное движение, характеризуемое некоторой средней скоростью электронов vcp, определяет протекание электрического тока.

Электроны могут иметь направленное движение и в разреженных газах. В электролитах и ионизированных газах протекание тока в основном обусловлено движением ионов. В соответствии с тем, что в электролитах положительно заряженные ионы движутся от положительного полюса к отрицательному, исторически направление тока было принято обратным направлению движения электронов.

За направление тока принимается направление, в котором перемещаются положительно заряженные частицы, т.е. направление, противоположное перемещению электронов.
В теории электрических цепей за направление тока в пассивной цепи (вне источников энергии) взято направление движения положительно заряженных частиц от более высокого потенциала к более низкому. Такое направление было принято в самом начале развития электротехники и противоречит истинному направлению движения носителей заряда - электронов, движущихся в проводящих средах от минуса к плюсу.


Величина, равная отношению тока к площади поперечного сечения S, называются плотностью тока (обозначается δ ): δ= I / S

При этом предполагается, что ток равномерно распределен по сечению проводника. Плотность тока в проводах обычно измеряется в А/мм2.

По типу носителей электрических зарядов и среды их перемещения различают токи проводимости и токи смещения . Проводимость делят на электронную и ионную. Для установившихся режимов различают два вида токов: постоянный и переменный.

Электрическим током переноса называют явление переноса электрических зарядов заряженными частицами или телами, движущимися в свободном пространстве. Основным видом электрического тока переноса является движение в пустоте элементарных частиц, обладающих зарядом (движение свободных электронов в электронных лампах), движение свободных ионов в газоразрядных приборах.

Электрическим током смещения (током поляризации) называют упорядоченное движение связанных носителей электрических зарядов. Этот вид тока можно наблюдать в диэлектриках.
Полный электрический ток - скалярная величина, равная сумме электрического тока проводимости, электрического тока переноса и электрического тока смещения сквозь рассматриваемую поверхность.

Постоянным называют ток, который может изменяться по величине, но не изменяет своего знака сколь угодно долгое время. Подробнее об этом читайте здесь:

Переменным называют ток, который периодически изменяется как по величине, так и по знаку. Величиной, характеризующей переменный ток, является частота (в системе СИ измеряется в герцах), в том случае, когда его сила изменяется периодически. Переменный ток высокой частоты вытесняется на поверхность проводника. Токи высокой частоты применяется в машиностроении для термообработки поверхностей деталей и сварки, в металлургии для плавки металлов. Переменные токи подразделяют на синусоидальные и несинусоидальные . Синусоидальным называют ток, изменяющийся по гармоническому закону:

i = Im sin ωt,

Скорость изменения переменного тока характеризуется его , определяемой как число полных повторяющихся колебаний в единицу времени. Частота обозначается буквой f и измеряется в герцах (Гц). Так, частота тока в сети 50 Гц соответствует 50 полным колебаниям в секунду. Угловая частота ω - скорость изменения тока в радианах в секунду и связана с частотой простым соотношением:

ω = 2πf

Установившиеся (фиксированные) значения постоянного и переменного токов обозначают прописной буквой I неустановившиеся (мгновенные) значения - буквой i. Условно положительным направлением тока считают направление движения положительных зарядов.

Это ток, который изменяется по закону синуса с течением времени.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае параметры переменного тока изменяются по гармоническому закону.

Поскольку переменный ток изменяется во времени, простые способы решения задач, пригодные для цепей постоянного тока, здесь непосредственно неприменимы. При очень высоких частотах заряды могут совершать колебательное движение - перетекать из одних мест цепи в другие и обратно. При этом, в отличие от цепей постоянного тока, токи в последовательно соединённых проводниках могут оказаться неодинаковыми. Ёмкости, присутствующие в цепях переменного тока, усиливают этот эффект. Кроме того, при изменении тока сказываются эффекты самоиндукции, которые становятся существенными даже при низких частотах, если используются катушки с большой индуктивностью. При сравнительно низких частотах цепи переменного тока можно по-прежнему рассчитывать с помощью , которые, однако, необходимо соответствующим образом модифицировать.

Цепь, в которую входят разные резисторы, катушки индуктивности и конденсаторы, можно рассматривать, как если бы она состояла из обобщённых резистора, конденсатора и катушки индуктивности, соединённых последовательно.

Рассмотрим свойства такой цепи, подключённой к генератору синусоидального переменного тока. Чтобы сформулировать правила, позволяющие рассчитывать цепи переменного тока, нужно найти соотношение между падением напряжения и током для каждого из компонентов такой цепи.

Играет совершенно разные роли в цепях переменного и постоянного токов. Если, например, к цепи подключить электрохимический элемент, то конденсатор начнёт заряжаться, пока напряжение на нём не станет равным ЭДС элемента. Затем зарядка прекратится и ток упадёт до нуля. Если же цепь подключена к генератору переменного тока, то в один полупериод электроны будут вытекать из левой обкладки конденсатора и накапливаться на правой, а в другой - наоборот. Эти перемещающиеся электроны и представляют собой переменный ток, сила которого одинакова по обе стороны конденсатора. Пока частота переменного тока не очень велика, ток через резистор и катушку индуктивности также одинаков.

В устройствах-потребителях переменного тока переменный ток часто выпрямляется выпрямителями для получения постоянного тока.

Проводники электрического тока

Материал, в котором течёт ток, называется . Некоторые материалы при низких температурах переходят в состояние сверхпроводимости. В таком состоянии они не оказывают почти никакого сопротивления току, их сопротивление стремится к нулю. Во всех остальных случаях проводник оказывает сопротивление течению тока и в результате часть энергии электрических частиц превращается в тепло. Силу тока можно рассчитать по для участка цепи и закону Ома для полной цепи.

Скорость движения частиц в проводниках зависит от материала проводника, массы и заряда частицы, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света в данной среде, то есть скорости распространения фронта электромагнитной волны.

Как ток влияет на организм человека

Ток, пропущенный через организм человека или животного, может вызвать электрические ожоги, фибрилляцию или смерть. С другой стороны, электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляцию определённых областей головного мозга применяют для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии. В организме человека и животных ток используется для передачи нервных импульсов.

По технике безопасности, минимально ощутимый человеком ток составляет 1 мА. Опасным для жизни человека ток становится начиная с силы примерно 0,01 А. Смертельным для человека ток становится начиная с силы примерно 0,1 А. Безопасным считается напряжение менее 42 В.

Включайся в дискуссию
Читайте также
Приснились волосы во рту - толкование сна по сонникам
Где родился пророк Мухаммед и где похоронен?
Снится зайти в чужой дом