Подпишись и читай
самые интересные
статьи первым!

Открытие электромагнитной индукции краткое содержание. Кто открыл явление электромагнитной индукции

Прежде, чем ответить на вопрос о том, кто открыл явление электромагнитной индукции, рассмотрим какая ситуация сложилась в то время в научном мире в соответствующей области знаний. Открытие в 1820 г. Х.К. Эрстедом магнитного поля вокруг проволоки с током вызвало широкий резонанс в научных кругах. Было проведено много экспериментов в области электричества. Идею электромагнитного вращения около проводника с током предложил Волластон. М. Фарадей к этой идее пришел сам и создал первую модель электродвигателя в 1821 г. Ученый обеспечил действие тока на один полюс магнита, при помощи ртутного контакта реализовал непрерывное вращение магнита вокруг проводника с током. Именно тогда М. Фарадей в своем дневнике сформулировал следующую задачу: превратить магнетизм в электричество. На решение данной задачи ушло почти десять лет. Только в ноябре 1831 М. Фарадей начал системно публиковать результаты своих исследований на эту тему. Классическими опытами Фарадея по обнаружению явления электромагнитной индукции стали:
Первый опыт :
Берется гальванометр, который замкнут на соленоид. В соленоид вдвигают или выдвигают постоянный магнит. При движении магнита наблюдают отклонение стрелки гальванометра, который показывает появление тока индукции. При этом, чем выше скорость движения магнита относительно катушки, тем больше отклонение стрелки. Если полюса магнита поменять, то изменится направление отклонения стрелки гальванометра. Надо сказать, что в разновидности данного опыта магнит можно сделать неподвижным и передвигать соленоид относительно магнита.
Второй опыт:
Имеются две катушки. Одна вставлена в другую. Концы одной катушки присоединяются к гальванометру. Через другую катушку пропускают электрический ток. Стрелка гальванометра отклоняется в моменты включения (выключения) тока, его изменения (увеличения или уменьшения) или при движении катушек по отношению друг к другу. При этом направление отклонения стрелки гальванометра противоположны при включении и выключении тока (уменьшении — увеличении).
Проведя обобщение своих экспериментов, М. Фарадей сделал вывод о том, что ток индукции появляется всегда, когда поток магнитной индукции, сцепленный с контуром, изменяется. Кроме того, было получено, что величина тока индукции не зависит от способа, каким происходит изменение магнитного потока, а определена скоростью его изменения. В своих экспериментах М. Фарадей показывал, что угол отклонения стрелки гальванометра зависит от скорости движения магнита (или скорости изменения силы тока, или скорости движения катушек). И так, результаты экспериментов Фарадея в этой области можно свести к следующему:
Электродвижущая сила индукции появляется при изменении магнитного потока (см. подробнее страничку « »).
Установленную М. Фарадеем связь между электричеством и магнетизмом Максвелл записал в математическом виде. В настоящее время эту запись мы знаем как закон электромагнитной индукции (закон Фарадея) (стр.« »).

Сегодня мы расскажем о явлении электромагнитной индукции. Раскроем, почему этот феномен был открыт и какую пользу принес.

Шелк

Люди всегда стремились жить лучше. Кто-то может подумать, что это повод обвинить человечество в алчности. Но часто речь идет об обретении элементарного бытового удобства.

В средневековой Европе умели делать ткани шерстяные, хлопковые и льняные. А еще в то время люди страдали от избытка блох и вшей. При этом в китайской цивилизации уже научились виртуозно ткать шелк. Одежда из него не подпускала кровососов к коже человека. Лапки насекомых скользили по гладкой ткани, и вши сваливались. Поэтому европейцы захотели во что бы то ни стало одеваться в шелк. А торговцы подумали, что это еще одна возможность разбогатеть. Поэтому был проложен Великий шелковый путь.

Только так желанную ткань доставляли страждущей Европе. И настолько много людей вовлекались в процесс, что в результате возникали города, империи спорили за право взимать налоги, а некоторые отрезки пути до сих пор наиболее удобный способ добраться до нужного места.

Компас и звезда

На пути караванов с шелком вставали горы и пустыни. Бывало, что характер местности оставался прежним недели и месяцы. Степные дюны сменялись такими же холмами, один перевал следовал за другим. И людям надо было как-то ориентироваться, чтобы доставить свой ценный груз.

Первыми на выручку пришли звезды. Зная, какой сегодня день, и каких созвездий ожидать, опытный путешественник всегда мог определить, где юг, где восток, и куда идти. Но людей с достаточным объемом знаний всегда не хватало. Да и время точно отсчитывать тогда не умели. Закат солнца, восход - вот и все ориентиры. А снежная или песчаная буря, пасмурная погода исключали даже возможность видеть полярную звезду.

Потом люди (вероятно, древние китайцы, но ученые еще спорят на этот счет) поняли, что один минерал всегда определенным образом расположен по отношению к сторонам света. Это свойство использовалось, чтобы создать первый компас. До открытия явления электромагнитной индукции было далеко, но начало было положено.

От компаса к магниту

Само название «магнит» восходит к топониму. Вероятно, первые компасы делались из руды, добываемой в холмах Магнезии. Эта область располагается в Малой Азии. И выглядели магниты как черные камни.

Первые компасы были весьма примитивными. В чашу или другую емкость наливалась вода, сверху клался тонкий диск из плавучего материала. А в центр диска помещалась намагниченная стрелка. Один ее конец всегда указывал на север, другой - на юг.

Трудно даже представить себе, что караван сохранял воду для компаса, пока от жажды умирали люди. Но не потерять направление и позволить людям, животным и товару добраться до безопасного места было важнее нескольких отдельных жизней.

Компасы проделывали множество путешествий и встречались с различными феноменами природы. Неудивительно, что явление электромагнитной индукции было открыто в Европе, хотя магнитная руда первоначально добывалась в Азии. Вот таким замысловатым образом желание европейских жителей спать удобнее привело к важнейшему открытию физики.

Магнитное или электрическое?

В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.

В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.

Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.

Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит - стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.

Продолжение опытов

Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.

Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.

Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.

Формула

Закон Фарадея для электромагнитной индукции выражается формулой

Расшифруем символы.

ε обозначает ЭДС или электродвижущую силу. Эта величина скалярная (то есть не векторная), и она показывает работу, которую прикладывают некие силы или законы природы, чтобы создать ток. Надо отметить, что работу должны совершать непременно неэлектрические явления.

Φ - это магнитный поток сквозь замкнутый контур. Данная величина является произведением двух других: модуля вектора магнитной индукции В и площади замкнутого контура. Если магнитное поле действует на контур не строго перпендикулярно, то к произведению добавляется косинус угла между вектором В и нормалью к поверхности.

Последствия открытия

За этим законом последовали другие. Последующие ученые устанавливали зависимости напряженности электрического тока от мощности, сопротивления от материала проводника. Изучались новые свойства, создавались невероятные сплавы. Наконец, человечество расшифровало структуру атома, вникло в тайну рождения и смерти звезд, вскрыло геном живых существ.

И все эти свершения требовали огромного количества ресурсов, а, прежде всего, электричества. Любое производство или большое научное исследование проводились там, где были доступны три составляющие: квалифицированные кадры, непосредственно материал, с которым надо работать и дешевая электроэнергия.

А это было возможно там, где силы природы могли придавать большой момент вращения ротору: реки с большим перепадом высот, долины с сильными ветрами, разломы с избытком геомагнитной энергии.

Интересно, что современный способ получать электричество не отличается принципиально от опытов Фарадея. Магнитный ротор очень быстро вращается внутри большой катушки проволоки. Магнитное поле в обмотке все время меняется и генерируется электрический ток.

Конечно, подобраны и наилучший материал для магнита и проводников, и технология всего процесса совсем другая. Но суть в одном: используется принцип, открытый на простейшей системе.

До сих пор мы рассматривали электрические и магнитные поля, не изменяющиеся с течением времени. Было выяснено, что электрическое поле создается электрическими зарядами, а магнитное поле - движущимися зарядами, т. е. электрическим током. Перейдем к знакомству с электрическим и магнитным полями, которые меняются со временем.

Самый важный факт, который удалось обнаружить, - это теснейшая взаимосвязь между электрическим и магнитным полями. Изменяющееся во времени магнитное поле порождает электрическое поле, а изменяющееся электрическое поле порождает магнитное. Без этой связи между полями разнообразие проявлений электромагнитных сил не было бы столь обширным, каким оно является на самом деле. Не существовало бы ни радиоволн, ни света.

Не случайно первый, решающий шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Благодаря этому он сделал открытие, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока. (Другие источники: гальванические элементы, аккумуляторы и др. - дают ничтожную долю вырабатываемой энергии.)

Электрический ток, рассуждал Фарадей, способен намагнитить кусок железа. Не может ли магнит, в свою очередь, вызвать появление электрического тока?

Долгое время эту связь обнаружить не удавалось. Трудно было додуматься до главного, а именно: только движущийся магнит или меняющееся во времени магнитное поле может возбудить электрический ток в катушке.

Какого рода случайности могли помешать открытию, показывает следующий факт. Почти одновременно с Фарадеем швейцарский физик Колладон пытался получить электрический ток в катушке с помощью магнита. При работе он пользовался гальванометром, легкая магнитная стрелка которого помещалась внутри катушки прибора. Чтобы магнит не оказывал непосредственного влияния на стрелку, концы катушки, в которую Колладон вдвигал магнит, надеясь получить в ней ток, были выведены в соседнюю комнату и там присоединены к гальванометру. Вставив магнит в катушку, Колладон шел в соседнюю комнату и с огорчением

убеждался, что гальванометр не показывает тока. Стоило бы ему все время наблюдать за гальванометром и попросить кого-нибудь заняться магнитом, замечательное открытие было бы сделано. Но этого не случилось. Покоящийся относительно катушки магнит не вызывает в ней тока.

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. Оно было открыто 29 августа 1831 г. Редкий случай, когда дата нового замечательного открытия известна так точно. Вот описание первого опыта, данное самим Фарадеем:

«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута и между витками ее намотана проволока такой же длины, но изолированная от первой хлопчатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удавалось заметить внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмотря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи» (Фарадей М. «Экспериментальные исследования по электричеству», 1-я серия).

Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек друг

относительно друга. Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита. В течение одного месяца Фарадей опытным путем открыл все существенные особенности явления электромагнитной индукции.

В настоящее время опыты Фарадея может повторить каждый. Для этого надо иметь две катушки, магнит, батарею элементов и достаточно чувствительный гальванометр.

В установке, изображенной на рисунке 238, индукционный ток возникает в одной из катушек при замыкании или размыкании электрической цепи другой катушки, неподвижной относительно первой. В установке на рисунке 239 с помощью реостата меняется сила тока в одной из катушек. На рисунке 240, а индукционный ток появляется при движении катушек друг относительно друга, а на рисунке 240, б - при движении постоянного магнита относительно катушки.

Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.

В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих площадь, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий индукционный ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, пронизывающих площадь неподвижного проводящего контура вследствие изменения силы тока в соседней катушке (рис. 238), и изменение числа линий индукции вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 241).


В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.
Открытие Фарадея
Не случайно первый и самый важный шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Вскоре после открытия Эрстеда он писал: «...представляется весьма необычным, чтобы, с одной стороны, всякий электрический ток сопровождался магнитным действием соответствующей интенсивности, направленным под прямым углом к току, и чтобы в то же время в хороших проводниках электричества, помещенных в сферу этого действия, совсем не индуцировался ток, не возникало какое-либо ощутимое действие, эквивалентное по силе такому току». Упорный труд в течение десяти лет и вера в успех привели Фарадея к открытию, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока. (Источники, работающие на других принципах: гальва-нические элементы, аккумуляторы, термо- и фотоэлементы - дают ничтожную долю вырабатываемой электрической энер-гии.)
Долгое время взаимосвязь электрических и магнитных явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.
Открытие электромагнитной индукции, как назвал Фарадей это явление, было сделано 29 августа" 1831 г. Редкий случай, когда столь точно известна дата нового замечательного открытия. Вот краткое описание первого опыта, данное самим Фарадеем.
«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлоп-чатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмо- Рис. 5.1
тря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».
Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 5.1). Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 5.2). В течение одного месяца Фарадей опытным путем открыл все существен- ные особенности явления электромагнитной индукции. Оста-валось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления.
Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.
В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, прони-зывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5.3).
Фарадей не только открыл явление, но и первым сконструировал несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита (рис. 5.4). Присоединив ось и край диска к гальванометру, Фарадей обнаружил откло-
В
\

\
\
\
\
\
\
\L

S нение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.
В проводящем замкнутом контуре возникает электрический ток, если контур находится в переменном магнитном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Это явление называется электромагнитной индукцией.

Явление электромагнитной индукции было открыто Майлом Фарадеем в 1831 году. Еще за 10 лет до этого Фарадей думал о способе превратить магнетизм в электричество. Он считал, что магнитное поле и электрическое поле должны быть как-то связаны.

Открытие электромагнитной индукции

Например, с помощью электрического поля можно намагнитить железный предмет. Наверное, должна существовать возможность с помощью магнита получить электрический ток.

Сначала Фарадей открыл явление электромагнитной индукции в неподвижных относительно друг друга проводниках. При возникновении в одной из них тока в другой катушке тоже индуцировался ток. Причем в дальнейшем он пропадал, и появлялся снова лишь при выключении питания одной катушки.

Через некоторое время Фарадей на опытах доказал, что при перемещении катушки без тока в цепи относительно другой, на концы которой подается напряжение, в первой катушке тоже будет возникать электрический ток.

Следующим опытом было введение в катушку магнита, и при этом тоже в ней появлялся ток. Данные опыты показаны на следующих рисунках.

Фарадеем была сформулирована основная причина появления тока в замкнутом контуре. В замкнутом проводящем контуре ток возникает при изменении числа линий магнитной индукции, которые пронизывают этот контур.

Чем больше будет это изменение, тем сильнее получится индукционный ток. Неважно, каким образом мы добьемся изменения числа линий магнитной индукции. Например, это можно сделать движением контура в неоднородном магнитном поле, как это происходило в опыте с магнитом или движением катушки. А можем, например, изменять силу тока в соседней с контуром катушке, при этом будет изменяться магнитное поле, создаваемое этой катушкой.

Формулировка закона

Подведем краткий итог. Явление электромагнитной индукции – это явление возникновения тока в замкнутом контуре, при изменении магнитного поля в котором находится этот контур.

Для более точной формулировки закона электромагнитной индукции необходимо ввести величину, которая бы характеризовала магнитное поле – поток вектора магнитной индукции.

Магнитный поток

Вектор магнитной индукции обозначается буквой B. Он будет характеризовать магнитное поле в любой точке пространства. Теперь рассмотрим замкнутый контур, ограничивающий поверхность площадью S. Поместим его в однородное магнитное поле.

Между вектором нормали к поверхности и вектором магнитной индукции будет некоторый угол а. Магнитный поток Ф через поверхность площадью S называется физическая величина, равная произведению модуля вектора магнитной индукции на площадь поверхности и косинус угла между вектором магнитной индукции и нормалью к контуру.

Ф = B*S*cos(a).

Произведение B*cos(a) является проекцией вектора В на нормаль n. Поэтому форму для магнитного потока можно переписать следующим образом:

Единицей измерения магнитного потока является вебер. Обозначается 1 Вб. Магнитный поток в 1Вб создается магнитным полем с индукцией 1 Тл через поверхность площадь 1 м^2, которая расположена перпендикулярно вектору магнитной индукции.

Включайся в дискуссию
Читайте также
Шейные позвонки человека и жирафа
Из скольких позвонков состоит шейный отдел жирафа
Упражнения по чтению гласных в четырех типах слога