Подпишись и читай
самые интересные
статьи первым!

Определение тока в газах. Электрический ток в газах: определение, особенности и интересные факты

1. Ионизация, ее сущность и виды.

Первым условием существования электрического тока является наличие свободных носителей заряда. В газах они возникают в результате ионизации. Под действием факторов ионизации от нейтральной частицы отделяется электрон. Атом становится положительным ионом. Таким образом, возникает 2 типа носителей заряда: положительный ион и свободный электрон. Если электрон присоединится к нейтральному атому, то возникает отрицательный ион, т.е. третий тип носителей заряда. Ионизированный газ называют проводником третьего рода. Здесь возможно 2 типа проводимости: электронная и ионная. Одновременно с процессами ионизации идет обратный процесс- рекомбинация. Для отделения электрона от атома надо затратить энергию. Если энергия поводится извне, то факторы способствующие ионизации, называются внешними (высокая температура, ионизирующее излучение, у/ф излучение, сильные магнитные поля). В зависимости от факторов ионизации, ее называют термоионизацией, фотоионизацией. Также ионизация может быть вызвана механическим ударом. Факторы ионизации делятся на естественные и искусственные. Естественная вызвана излучением Солнца, радиоактивным фоном Земли. Кроме внешней ионизацией есть внутренняя. Ее делят на ударную и ступенчатую.

Ударная ионизация.

При достаточно высоком напряжении, электроны разогнанные полем до больших скоростей, сами становятся источником ионизации. При ударе такого электрона о нейтральный атом происходит выбивание электрона из атома. Это происходит, когда энергия электрона, вызывающего ионизацию, превышает энергию ионизации атома. Напряжение между электродами должно быть достаточным для приобретения электроном нужной энергии. Это напряжение называется ионизационным. Для каждого имеет свое значение.

Если энергия движущегося электрона меньше, чем это необходимо, то при ударе происходит лишь возбуждение нейтрального атома. Если движущийся электрон сталкивается с предварительно возбужденным атомом, то происходит ступенчатая ионизация.

2. Несамостоятельный газовый разряд и его вольт-амперная характеристика.

Ионизация приводит к выполнению первого условия существования тока, т.е. к появлению свободных зарядов. Для возникновения тока необходимо наличие внешней силы, которая заставит заряды двигаться направленно, т.е. необходимо электрическое поле. Электрический ток в газах сопровождаются рядом явлений: световых, звуковых, образование озона, окислов азота. Совокупность явлений сопровождающих прохождением тока через газ- газовый разряд . Часто газовым разрядом называют сам процесс прохождения тока.

Разряд называется несамостоятельным, если он существует только во время действия внешнего ионизатора. В этом случае после прекращения действия внешнего ионизатора не образуются новые носители заряда, и ток прекращается. При несамостоятельном разряде токи имеют по величине небольшое значение, а свечение газа отсутствует.

Самостоятельный газовый разряд, его виды и характеристика.

Самостоятельный газовый разряд - это разряд, который может существовать после прекращения действия внешнего ионизатора, т.е. за счет ударной ионизации. В этом случае наблюдается световые и звуковые явления, сила тока может значительно увеличиваться.

Виды самостоятельного разряда:

1. тихий разряд -следует непосредственно за несамостоятельным, сила тока не превышает 1 мА, звуковых и световых явлений нет. Применяется в физиотерапии, счетчиках Гейгера - Мюллера.

2. тлеющий разряд . При увеличении напряжения тихий переходит в тлеющий. Он возникает при определенном напряжении - напряжении зажигания. Оно зависит от вида газа. У неона 60-80 В. Также зависит от давления газа. Тлеющий разряд сопровождается свечением, оно связано с рекомбинацией, идущей с выделением энергии. Цвет также зависит от вида газа. Применяется в индикаторных лампах (неоновых, у/ф бактерицидных, осветительных, люминесцентных).

3. дуговой разряд. Сила тока 10 - 100 А. Сопровождается интенсивным свечением, температура в газоразрядном промежутке достигает нескольких тысяч градусов. Ионизация достигает почти 100%. 100% ионизированный газ - холодная газовая плазма. У нее хорошая проводимость. Применяется в ртутных лампах высокого и сверхвысокого давления.

4. Искровой разряд - это разновидность дугового. Это разряд импульсно - колебательного характера. В медицине применяется воздействие высокочастотных колебаний.При большой плотности тока наблюдаются интенсивные звуковые явления.

5. коронный разряд . Это разновидность тлеющего разряда Он наблюдается в местах где происходит резкое изменение напряженности электрического поля. Здесь возникает лавина зарядов и свечение газов - корона.

В природе не существует абсолютных диэлектриков. Упорядоченное движение частиц - носителей электрического заряда, - то есть ток, можно вызвать в любой среде, однако для этого необходимы особые условия. Мы рассмотрим здесь, как протекают электрические явления в газах и как газ можно из очень хорошего диэлектрика превратить в очень хороший проводник. Нас будет интересовать, при каких условиях возникает, а также какими особенностями характеризуется электрический ток в газах.

Электрические свойства газов

Диэлектрик - это вещество (среда), в котором концентрация частиц - свободных носителей электрического заряда - не достигает сколько-нибудь значимой величины, вследствие чего проводимость пренебрежимо мала. Все газы - хорошие диэлектрики. Их изолирующие свойства используются повсеместно. Например, в любом выключателе размыкание цепи происходит, когда контакты приводятся в такое положение, чтобы между ними образовался воздушный зазор. Провода в линиях электропередач также изолируются друг от друга воздушным слоем.

Структурной единицей любого газа является молекула. Она состоит из атомных ядер и электронных облаков, то есть представляет собой совокупность электрических зарядов, некоторым образом распределенных в пространстве. Молекула газа может быть вследствие особенностей своего строения либо поляризоваться под действием внешнего электрического поля. Подавляющее большинство молекул, составляющих газ, в обычных условиях электрически нейтральны, поскольку заряды в них компенсируют друг друга.

Если приложить к газу электрическое поле, молекулы примут дипольную ориентацию, занимая пространственное положение, компенсирующее воздействие поля. Присутствующие в газе заряженные частицы под действием кулоновских сил начнут движение: положительные ионы - в направлении катода, отрицательные ионы и электроны - к аноду. Однако если поле имеет недостаточный потенциал, единый направленный поток зарядов не возникает, и можно говорить скорее об отдельных токах, настолько слабых, что ими следует пренебречь. Газ ведет себя как диэлектрик.

Таким образом, для возникновения электрического тока в газах необходима большая концентрация свободных носителей заряда и присутствие поля.

Ионизация

Процесс лавинообразного увеличения числа свободных зарядов в газе называют ионизацией. Соответственно, газ, в котором присутствует значительное количество заряженных частиц, называется ионизированным. Именно в таких газах создается электрический ток.

Процесс ионизации связан с нарушением нейтральности молекул. Вследствие отрыва электрона возникают положительные ионы, присоединение электрона к молекуле приводит к образованию отрицательного иона. Кроме того, в ионизированном газе много свободных электронов. Положительные ионы и особенно электроны - главные носители заряда при электрическом токе в газах.

Ионизация происходит, когда частице сообщается некоторое количество энергии. Так, внешний электрон в составе молекулы, получив эту энергию, может покинуть молекулу. Взаимные столкновения заряженных частиц с нейтральными приводят к выбиванию новых электронов, и процесс принимает лавинообразный характер. Кинетическая энергия частиц также возрастает, что значительно способствует ионизации.

Откуда берется энергия, затрачиваемая на возбуждение в газах электрического тока? Ионизация газов имеет несколько источников энергии, соответственно которым принято именовать и ее типы.

  1. Ионизация электрическим полем. В этом случае потенциальная энергия поля преобразуется в кинетическую энергию частиц.
  2. Термоионизация. Повышение температуры также ведет к образованию большого количества свободных зарядов.
  3. Фотоионизация. Суть данного процесса в том, что энергию электронам сообщают кванты электромагнитного излучения - фотоны, если они имеют достаточно высокую частоту (ультрафиолетовые, рентгеновские, гамма-кванты).
  4. Ударная ионизация является результатом преобразования кинетической энергии сталкивающихся частиц в энергию отрыва электрона. Наряду с термоионизацией, она служит основным фактором возбуждения в газах электрического тока.

Каждый газ характеризуется определенной пороговой величиной - энергией ионизации, необходимой для того, чтобы электрон мог оторваться от молекулы, преодолев потенциальный барьер. Эта величина для первого электрона составляет от нескольких вольт до двух десятков вольт; для отрыва следующего электрона от молекулы нужно больше энергии и так далее.

Следует учитывать, что одновременно с ионизацией в газе протекает обратный процесс - рекомбинация, то есть восстановление нейтральных молекул под действием кулоновских сил притяжения.

Газовый разряд и его типы

Итак, электрический ток в газах обусловлен упорядоченным движением заряженных частиц под действием приложенного к ним электрического поля. Наличие таких зарядов, в свою очередь, возможно благодаря различным факторам ионизации.

Так, термоионизация требует значительных температур, но открытое пламя в связи с некоторыми химическими процессами способствует ионизации. Даже при сравнительно невысокой температуре в присутствии пламени фиксируется появление в газах электрического тока, и опыт с проводимостью газа позволяет легко в этом убедиться. Надо поместить пламя горелки или свечи между обкладками заряженного конденсатора. Цепь, разомкнутая прежде из-за воздушного зазора в конденсаторе, замкнется. Включенный в цепь гальванометр покажет наличие тока.

Электрический ток в газах называется газовым разрядом. Нужно иметь в виду, что для поддержания стабильности разряда действие ионизатора должно быть постоянным, так как из-за постоянной рекомбинации газ теряет электропроводящие свойства. Одни носители электрического тока в газах - ионы - нейтрализуются на электродах, другие - электроны, - попадая на анод, направляются к «плюсу» источника поля. Если ионизирующий фактор перестанет действовать, газ немедленно снова станет диэлектриком, и ток прекратится. Такой ток, зависимый от действия внешнего ионизатора, называется несамостоятельным разрядом.

Особенности прохождения электрического тока через газы описываются особой зависимостью силы тока от напряжения - вольт-амперной характеристикой.

Рассмотрим развитие газового разряда на графике вольт-амперной зависимости. При повышении напряжения до некоторого значения U 1 ток нарастает пропорционально ему, то есть выполняется закон Ома. Возрастает кинетическая энергия, а следовательно, и скорость зарядов в газе, и этот процесс опережает рекомбинацию. При значениях напряжения от U 1 до U 2 такое соотношение нарушается; при достижении U 2 все носители зарядов достигают электродов, не успевая рекомбинировать. Все свободные заряды задействованы, и дальнейшее повышение напряжения не приводит к увеличению силы тока. Такой характер движения зарядов называется током насыщения. Таким образом, можно сказать, что электрический ток в газах обусловлен также особенностями поведения ионизированного газа в электрических полях различной напряженности.

Когда разность потенциалов на электродах достигает определенного значения U 3 , напряжение становится достаточным, чтобы электрическое поле вызвало лавинообразную ионизацию газа. Кинетической энергии свободных электронов уже хватает для ударной ионизации молекул. Скорость их при этом в большинстве газов составляет около 2000 км/с и выше (она рассчитывается по приближенной формуле v=600 U i , где U i - ионизационный потенциал). В этот момент происходит пробой газа и существенное возрастание тока за счет внутреннего источника ионизации. Поэтому такой разряд называется самостоятельным.

Наличие внешнего ионизатора в данном случае уже не играет роли для поддержания в газах электрического тока. Самостоятельный разряд в разных условиях и при различных характеристиках источника электрического поля может иметь те или иные особенности. Выделяют такие типы самостоятельного разряда, как тлеющий, искровой, дуговой и коронный. Мы рассмотрим, как ведет себя электрический ток в газах, кратко для каждого из этих типов.

В достаточно разности потенциалов от 100 (и даже меньше) до 1000 вольт для возбуждения самостоятельного разряда. Поэтому тлеющий разряд, характеризующийся малым значением силы тока (от 10 -5 А до 1 А), возникает при давлениях не более нескольких миллиметров ртутного столба.

В трубке с разреженным газом и холодными электродами формирующийся тлеющий разряд выглядит как тонкий светящийся шнур между электродами. Если продолжить откачку газа из трубки, будет наблюдаться размывание шнура, а при давлениях в десятые доли миллиметров ртутного столба свечение заполняет трубку практически полностью. Свечение отсутствует вблизи катода - в так называемом темном катодном пространстве. Остальная часть называется положительным столбом. При этом главные процессы, обеспечивающие существование разряда, локализуются именно в темном катодном пространстве и в прилегающей к нему области. Здесь происходит ускорение заряженных частиц газа, выбивающих из катода электроны.

При тлеющем разряде причиной ионизации является электронная эмиссия с катода. Испущенные катодом электроны производят ударную ионизацию молекул газа, возникающие положительные ионы вызывают вторичную эмиссию с катода и так далее. Свечение положительного столба связано в основном с отдачей фотонов возбужденными молекулами газа, и для различных газов характерно свечение определенного цвета. Положительный столб принимает участие в формировании тлеющего разряда только в качестве участка электрической цепи. Если сближать электроды, можно добиться исчезновения положительного столба, но при этом разряд не прекратится. Однако с дальнейшим сокращением расстояния между электродами тлеющий разряд не сможет существовать.

Необходимо отметить, что для данного типа электрического тока в газах физика некоторых процессов еще не прояснена полностью. Например, пока остается неясной природа сил, вызывающих при увеличении тока расширение на поверхности катода области, которая принимает участие в разряде.

Искровой разряд

Искровой пробой имеет импульсный характер. Он возникает при давлениях, близких к нормальному атмосферному, в случаях, когда мощности источника электрического поля недостаточно для поддержания стационарного разряда. Напряженность поля при этом велика и может достигать 3 МВ/м. Явление характеризуется резким возрастанием разрядного электрического тока в газе, одновременно напряжение чрезвычайно быстро падает, и разряд прекращается. Далее снова возрастает разность потенциалов, и весь процесс повторяется.

При этом типе разряда формируются кратковременные искровые каналы, рост которых может начинаться с любой точки между электродами. Это связано с тем, что ударная ионизация происходит случайным образом в местах, где в данный момент концентрируется наибольшее количество ионов. Вблизи искрового канала газ быстро нагревается и испытывает тепловое расширение, вызывающее акустические волны. Поэтому искровой разряд сопровождается треском, а также выделением теплоты и ярким свечением. Процессы лавинной ионизации порождают в искровом канале высокие давления и температуры до 10 тысяч градусов и выше.

Ярчайшим примером природного искрового разряда служит молния. Диаметр главного искрового канала молнии может составлять от нескольких сантиметров до 4 м, а длина канала достигать 10 км. Величина силы тока доходит до 500 тыс. ампер, а разность потенциалов между грозовым облаком и поверхностью Земли достигает миллиарда вольт.

Наиболее длинная молния протяженностью 321 км наблюдалась в 2007 году в Оклахоме, США. Рекордсменом по продолжительности стала молния, зафиксированная в 2012 году во Французских Альпах - она длилась свыше 7,7 секунды. При ударе молнии воздух может разогреться до 30 тысяч градусов, что в 6 раз превышает температуру видимой поверхности Солнца.

В тех случаях, когда мощность источника электрического поля достаточно велика, искровой разряд развивается в дуговой.

Этот вид самостоятельного разряда характеризуется большой плотностью тока и малым (меньше, чем при тлеющем разряде) напряжением. Дистанция пробоя невелика благодаря близкому расположению электродов. Разряд инициируется испусканием электрона с поверхности катода (для атомов металлов потенциал ионизации невелик по сравнению с молекулами газов). Во время пробоя между электродами создаются условия, при которых газ проводит электрический ток, и возникает искровой разряд, замыкающий цепь. Если мощность источника напряжения достаточно велика, искровые разряды переходят в устойчивую электрическую дугу.

Ионизация при дуговом разряде достигает почти 100%, сила тока очень велика и может составлять от 10 до 100 ампер. При атмосферном давлении дуга способна нагреваться до 5-6 тысяч градусов, а катод - до 3 тысяч градусов, что приводит к интенсивной термоэлектронной эмиссии с его поверхности. Бомбардировка анода электронами приводит к частичному разрушению: на нем образуется углубление - кратер с температурой около 4000 °C. Увеличение давления влечет за собой еще больший рост температур.

При разведении электродов дуговой разряд остается устойчивым до некоторого расстояния, что позволяет бороться с ним на тех участках электрооборудования, где он вреден из-за вызываемой им коррозии и выгорания контактов. Это такие устройства, как высоковольтные и автоматические выключатели, контакторы и прочие. Одним из методов борьбы с дугой, возникающей при размыкании контактов, является использование дугогасительных камер, основанных на принципе удлинения дуги. Применяются и многие другие методы: шунтирование контактов, использование материалов с высоким потенциалом ионизации и так далее.

Развитие коронного разряда происходит при нормальном атмосферном давлении в резко неоднородных полях у электродов, обладающих большой кривизной поверхности. Это могут быть шпили, мачты, провода, различные элементы электрооборудования, имеющие сложную форму, и даже волосы человека. Такой электрод называется коронирующим. Ионизационные процессы и, соответственно, свечение газа имеют место только вблизи него.

Корона может формироваться как на катоде (отрицательная корона) при бомбардировке его ионами, так и на аноде (положительная) в результате фотоионизации. Отрицательная корона, в которой ионизационный процесс как следствие термоэмиссии направлен от электрода, характеризуется ровным свечением. В положительной короне могут наблюдаться стримеры - светящиеся линии ломаной конфигурации, могущие превратиться в искровые каналы.

Примером коронного разряда в природных условиях являются возникающие на остриях высоких мачт, верхушках деревьев и так далее. Образуются они при большой напряженности электрического поля в атмосфере, часто перед грозой или во время метели. Кроме того, их фиксировали на обшивке самолетов, попавших в облако вулканического пепла.

Коронный разряд на проводах ЛЭП ведет к значительным потерям электроэнергии. При большом напряжении коронный разряд может переходить в дуговой. Борьбу с ним ведут различными способами, например, путем увеличения радиуса кривизны проводников.

Электрический ток в газах и плазма

Полностью или частично ионизированный газ называется плазмой и считается четвертым агрегатным состоянием вещества. В целом плазма электрически нейтральна, так как суммарный заряд составляющих ее частиц равен нулю. Это отличает ее от других систем заряженных частиц, таких как, например, электронные пучки.

В природных условиях плазма образуется, как правило, при высоких температурах вследствие столкновения атомов газа на больших скоростях. Подавляющая часть барионной материи во Вселенной пребывает в состоянии плазмы. Это звезды, часть межзвездного вещества, межгалактический газ. Земная ионосфера также представляет собой разреженную слабо ионизированную плазму.

Степень ионизации является важной характеристикой плазмы - от нее зависят проводящие свойства. Степень ионизации определяется как отношение количества ионизированных атомов к общему количеству атомов в единице объема. Чем сильнее ионизирована плазма, тем выше ее электропроводность. Кроме того, ей присуща высокая подвижность.

Мы видим, таким образом, что газы, проводящие электрический ток, в пределах канала разряда являют собой не что иное, как плазму. Так, тлеющий и коронный разряды - это примеры холодной плазмы; искровой канал молнии или электрическая дуга - примеры горячей, практически полностью ионизованной плазмы.

Электрический ток в металлах, жидкостях и газах - различия и сходство

Рассмотрим особенности, которыми характеризуется газовый разряд в сравнении со свойствами тока в других средах.

В металлах ток - это направленное движение свободных электронов, не влекущее за собой химических изменений. Проводники такого типа называют проводниками первого рода; к ним относятся, кроме металлов и сплавов, уголь, некоторые соли и оксиды. Их отличает электронная проводимость.

Проводники второго рода - это электролиты, то есть жидкие водные растворы щелочей, кислот и солей. Прохождение тока сопряжено с химическим изменением электролита - электролизом. Ионы вещества, растворенного в воде, под действием разности потенциалов перемещаются в противоположные стороны: положительные катионы - к катоду, отрицательные анионы - к аноду. Процесс сопровождается выделением газа либо отложением слоя металла на катоде. Проводникам второго рода присуща ионная проводимость.

Что касается проводимости газов, то она, во-первых, временная, во-вторых, имеет признаки сходства и различия с каждым из них. Так, электрический ток и в электролитах, и в газах - это направленный к противоположным электродам дрейф разноименно заряженных частиц. Однако в то время как электролиты характеризуются чисто ионной проводимостью, в газовом разряде при сочетании электронного и ионного типов проводимости ведущая роль принадлежит электронам. Еще одно различие электрического тока в жидкостях и в газах состоит в природе ионизации. В электролите молекулы растворенного соединения диссоциируют в воде, в газе же молекулы не разрушаются, а только теряют электроны. Поэтому газовый разряд, как и ток в металлах, не связан с химическими изменениями.

Неодинакова также и тока в жидкостях и газах. Проводимость электролитов в целом подчиняется закону Ома, а при газовом разряде он не соблюдается. Вольт-амперная характеристика газов имеет гораздо более сложный характер, связанный со свойствами плазмы.

Следует упомянуть и об общих и отличительных чертах электрического тока в газах и в вакууме. Вакуум - это почти идеальный диэлектрик. «Почти» - потому что в вакууме, несмотря на отсутствие (точнее, чрезвычайно малую концентрацию) свободных носителей заряда, тоже возможен ток. Но в газе потенциальные носители уже присутствуют, их только необходимо ионизировать. В вакуум носители заряда вносятся из вещества. Как правило, это происходит в процессе электронной эмиссии, например при нагревании катода (термоэлектронная эмиссия). Но и в различных типах газовых разрядов эмиссия, как мы видели, играет важную роль.

Применение газовых разрядов в технике

О вредном воздействии тех или иных разрядов вкратце речь уже шла выше. Теперь обратим внимание на пользу, которую они приносят в промышленности и в быту.

Тлеющий разряд применяют в электротехнике (стабилизаторы напряжения), в технологии нанесения покрытий (метод катодного распыления, основанный на явлении коррозии катода). В электронике его используют для получения ионных и электронных пучков. Широко известной областью применения тлеющего разряда являются люминесцентные и так называемые экономичные лампы и декоративные неоновые и аргоновые газоразрядные трубки. Кроме того, тлеющий разряд применяют в и в спектроскопии.

Искровой разряд находит применение в предохранителях, в электроэрозионных методах точной обработки металлов (искровая резка, сверление и так далее). Но наиболее известен он благодаря использованию в свечах зажигания двигателей внутреннего сгорания и в бытовой технике (газовые плиты).

Дуговой разряд, будучи впервые использован в осветительной технике еще в 1876 году (свеча Яблочкова - «русский свет»), до сих пор служит в качестве источника света - например, в проекционных аппаратах и мощных прожекторах. В электротехнике дуга используется в ртутных выпрямителях. Кроме того, она применяется в электросварке, в резке металла, в промышленных электропечах для выплавки стали и сплавов.

Коронный разряд находит применение в электрофильтрах для ионной очистки газов, в счетчиках элементарных частиц, в молниеотводах, в системах кондиционирования воздуха. Также коронный разряд работает в копировальных аппаратах и лазерных принтерах, где посредством его производится заряд и разрядка светочувствительного барабана и перенос порошка с барабана на бумагу.

Таким образом, газовые разряды всех типов находят самое широкое применение. Электрический ток в газах успешно и эффективно используется во многих областях техники.

В обычных условиях газы не проводят электрический ток, так как их молекулы электрически нейтральны. Например, сухой воздух - это хороший изолятор, в чем мы могли убедиться с помощью самых простых опытов по электростатике. Однако воздух и другие газы становятся проводниками электрического тока, если в них тем или иным способом создать ионы.

Рис. 100. Воздух становится проводником электрического тока, если его ионизировать

Простейший опыт, иллюстрирующий проводимость воздуха при его ионизации пламенем показан на рис. 100: заряд на пластинах, сохраняющийся в течение длительного времени, быстро исчезает при внесении зажженной спички в пространство между пластинами.

Газовый разряд. Процесс прохождения электрического тока через газ обычно называют газовым разрядом (или электрическим разрядом в газе). Газовые разряды подразделяются на два вида: самостоятельные и несамостоятельные.

Несамостоятельный разряд. Разряд в газе называют несамостоятельным, если для его поддержания необходим внешний источник

ионизации. Ионы в газе могут возникать под действием высоких температур, рентгеновского и ультрафиолетового излучения, радиоактивности, космических лучей и т. д. Во всех этих случаях происходит освобождение одного или нескольких электронов из электронной оболочки атома или молекулы. В результате в газе появляются положительные ионы и свободные электроны. Освободившиеся электроны могут присоединяться к нейтральным атомам или молекулам, превращая их в отрицательные ионы.

Ионизация и рекомбинация. Наряду с процессами ионизации в газе происходят и обратные процессы рекомбинации: соединяясь между собой, положительные и отрицательные ионы или положительные ионы и электроны образуют нейтральные молекулы или атомы.

Изменение со временем концентрации ионов, обусловленное постоянным источником ионизации и процессами рекомбинации, можно описать следующим образом. Допустим, что источник ионизации создает в единице объема газа за единицу времени положительных ионов и такое же число электронов. Если в газе нет электрического тока и можно пренебречь уходом ионов из рассматриваемого объема из-за диффузии, то единственным механизмом уменьшения концентрации ионов будет рекомбинация.

Рекомбинация происходит при встрече положительного иона с электроном. Число таких встреч пропорционально как числу ионов, так и числу свободных электронов, т. е. пропорционально . Поэтому убыль числа ионов в единице объема в единицу времени может быть записана в виде , где а - постоянная величина, называемая коэффициентом рекомбинации.

При справедливости введенных предположений уравнение баланса ионов в газе запишется в виде

Мы не будем решать это дифференциальное уравнение в общем виде, а рассмотрим некоторые интересные частные случаи.

Прежде всего отметим, что процессы ионизации и рекомбинации через некоторое время должны скомпенсировать друг друга и в газе установится постоянная концентрация видно, что при

Стационарная концентрация ионов тем больше, чем мощнее источник ионизации и чем меньше коэффициент рекомбинации а.

После выключения ионизатора убывание концентрации ионов описывается уравнением (1), в котором нужно положить принять в качестве начального значения концентрации

Переписав это уравнение в виде после интегрирования получаем

График этой функции показан на рис. 101. Он представляет собой гиперболу, асимптотами которой являются ось времени и вертикальная прямая Разумеется, физический смысл имеет лишь участок гиперболы, соответствующий значениям Отметим медленный характер убывания концентрации со временем в сравнении с часто встречающимися в физике процессами экспоненциального затухания, которые реализуются, когда скорость убывания какой-либо величины пропорциональна первой степени мгновенного значения этой величины.

Рис. 101. Убывание концентрации ионов в газе после выключения источника ионизации

Несамостоятельная проводимость. Процесс спадания концентрации ионов после прекращения действия ионизатора значительно ускоряется, если газ находится во внешнем электрическом поле. Вытягивая электроны и ионы на электроды, электрическое поле может очень быстро обратить в нуль электропроводность газа в отсутствие ионизатора.

Для уяснения закономерностей несамостоятельного разряда рассмотрим для простоты случай, когда ток в ионизуемом внешним источником газе течет между двумя плоскими электродами, параллельными друг другу. В этом случае ионы и электроны находятся в однородном электрическом поле напряженности Е, равной отношению приложенного к электродам напряжения к расстоянию между ними.

Подвижность электронов и ионов. При постоянном приложенном напряжении в цепи устанавливается некоторая постоянная сила тока 1. Это значит, что электроны и ионы в ионизованном газе движутся с постоянными скоростями. Чтобы объяснить этот факт, нужно считать, что кроме постоянной ускоряющей силы электрического поля на движущиеся ионы и электроны действуют силы сопротивления, растущие с увеличением скорости. Эти силы описывают усредненный эффект столкновений электронов и ионов с нейтральными атомами и молекулами газа. Благодаря силам сопротивления

устанавливаются в среднем постоянные скорости электронов и ионов, пропорциональные напряженности Е электрического поля:

Коэффициенты пропорциональности называются подвижностями электрона и иона. Подвижности ионов и электронов имеют разные значения и зависят от сорта газа, его плотности, температуры и т. д.

Плотность электрического тока т. е. заряд, переносимый электронами и ионами за единицу времени через единичную площадку, выражается через концентрацию электронов и ионов их заряды и скорости установившегося движения

Квазинейтральность. В обычных условиях ионизованный газ в целом электронейтрален, или, как говорят, квазинейтрален, ибо в малых объемах, содержащих сравнительно небольшое число электронов и ионов, условие электронейтральности может и нарушаться. Это значит, что выполняется соотношение

Плотность тока при несамостоятельном разряде. Чтобы получить закон изменения со временем концентрации носителей тока при несамостоятельном разряде в газе, нужно наряду с процессами ионизации внешним источником и рекомбинации учесть также уход электронов и ионов на электроды. Число частиц, уходящих в единицу времени на электрод площади из объема равно Скорость убывания концентрации таких частиц мы получим, разделив это число на объем газа между электродами. Поэтому уравнение баланса вместо (1) при наличии тока запишется в виде

Для установления режима, когда из (8) получаем

Уравнение (9) позволяет найти зависимость плотности установившегося тока при несамостоятельном разряде от приложенного напряжения (или от напряженности поля Е).

Два предельных случая видны непосредственно.

Закон Ома. При низком напряжении, когда в уравнении (9) можно пренебречь вторым слагаемым в правой части, после чего получаем формулы (7) при этом имеем

Плотность тока пропорциональна напряженности приложенного электрического поля. Таким образом, для несамостоятельного газового разряда в слабых электрических полях выполняется закон Ома.

Ток насыщения. При низкой концентрации электронов и ионов в уравнении (9) можно пренебречь первым (квадратичным по слагаемым в правой части. В этом приближении вектор плотности тока направлен вдоль напряженности электрического поля, а его модуль

не зависит от приложенного напряжения. Этот результат справедлив для сильных электрических полей. В этом случае говорят о токе насыщения.

Оба рассмотренных предельных случая можно исследовать и не обращаясь к уравнению (9). Однако таким путем нельзя проследить, как при увеличении напряжения происходит переход от закона Ома к нелинейной зависимости тока от напряжения.

В первом предельном случае, когда ток очень мал, основной механизм удаления электронов и ионов из области разряда - это рекомбинация. Поэтому для стационарной концентрации можно воспользоваться выражением (2), что при учете (7) немедленно дает формулу (10). Во втором предельном случае, наоборот, пренебрегается рекомбинацией. В сильном электрическом поле электроны и ионы не успевают сколько-нибудь заметно рекомбинировать за время пролета от одного электрода до другого, если концентрация их достаточно мала. Тогда все образуемые внешним источником электроны и ионы достигают электродов и полная плотность тока равна Она пропорциональна длине ионизационной камеры, поскольку полное число производимых ионизатором электронов и ионов пропорционально I.

Экспериментальное изучение газового разряда. Выводы теории несамостоятельного газового разряда подтверждаются экспериментами. Для исследования разряда в газе удобно использовать стеклянную трубку с двумя металлическими электродами. Электрическая схема такой установки показана на рис. 102. Подвижности

электронов и ионов сильно зависят от давления газа (обратно пропорционально давлению), поэтому опыты удобно проводить при пониженном давлении.

На рис. 103 представлена зависимость силы тока I в трубке от приложенного к электродам трубки напряжения Ионизацию в трубке можно создать, например, рентгеновскими или ультрафиолетовыми лучами либо с помощью слабого радиоактивного препарата. Существенно только, чтобы внешний источник ионов оставался неизменным Линейный участок ОА вольт-амперной характеристики соответствует области применимости закона Ома.

Рис. 102. Схема установки для изучения газового разряда

Рис. 103. Экспериментальная вольт-амперная характеристика газового разряда

На участке сила тока нелинейно зависит от напряжения. Начиная с точки В ток достигает насыщения и остается постоянным на некотором участке Все это соответствует теоретическим предсказаниям.

Самостоятельный разряд. Однако в точке С снова начинается возрастание тока, сначала медленное, а затем очень резкое. Это означает, что в газе появился новый, внутренний источник ионов. Если теперь убрать внешний источник, то разряд в газе не прекращается, т. е. из несамостоятельного разряд переходит в самостоятельный. При самостоятельном разряде образование новых электронов и ионов происходит в результате внутренних процессов в самом газе.

Ионизация электронным ударом. Нарастание тока при переходе от несамостоятельного разряда к самостоятельному происходит лавинообразно и называется электрическим пробоем газа. Напряжение, при котором происходит пробой, называется напряжением зажигания. Оно зависит от рода газа и от произведения давления газа на расстояние между электродами.

Процессы в газе, ответственные за лавинообразное нарастание силы тока при увеличении приложенного напряжения, связаны с ионизацией нейтральных атомов или молекул газа свободными электронами, разогнанными электрическим полем до достаточно

больших энергий. Кинетическая энергия электрона перед очередным столкновением с нейтральным атомом или молекулой пропорциональна напряженности электрического поля Е и длине свободного пробега электрона X:

Если эта энергия достаточна для того, чтобы ионизовать нейтральный атом или молекулу, т. е. превосходит работу ионизации

то при столкновении электрона с атомом или молекулой происходит их ионизация. В результате вместо одного электрона возникают два. Они в свою очередь разгоняются электрическим полем и ионизуют встречающиеся на их пути атомы или молекулы и т. д. Процесс развивается лавинообразно и называется электронной лавиной. Описанный механизм ионизации называется ионизацией электронным ударом.

Экспериментальное доказательство того, что ионизация нейтральных атомов газа происходит в основном благодаря ударам электронов, а не положительных ионов, было дано Дж. Таунсендом. Он брал ионизационную камеру в виде цилиндрического конденсатора, внутренним электродом которого служила тонкая металлическая нить, натянутая по оси цилиндра. В такой камере ускоряющее электрическое поле сильно неоднородно, и основную роль в ионизации играют частицы, которые попадают в область наиболее сильного поля вблизи нити. Опыт показывает, что при одном и том же напряжении между электродами ток разряда больше в том случае, когда положительный потенциал подается на нить, а не на внешний цилиндр. Именно в этом случае все создающие ток свободные электроны обязательно проходят через область наиболее сильного поля.

Эмиссия электронов из катода. Самостоятельный разряд может быть стационарным лишь при условии постоянного появления в газе новых свободных электронов, так как все возникающие в лавине электроны достигают анода и выбывают из игры. Новые электроны выбиваются из катода положительными ионами, которые при движении к катоду также ускоряются электрическим полем и приобретают достаточную для этого энергию.

Катод может испускать электроны не только в результате бомбардировки ионами, но и самостоятельно, при нагревании его до высокой температуры. Такой процесс называется термоэлектронной эмиссией, его можно рассматривать как своего рода испарение электронов из металла. Обычно оно происходит при таких температурах, когда испарение самого материала катода еще мало. В случае самостоятельного газового разряда катод обычно разогревается не

нитью накала, как в электронных лампах, а из-за выделения теплоты при бомбардировке его положительными ионами. Поэтому катод испускает электроны даже тогда, когда энергия ионов недостаточна для выбивания электронов.

Самостоятельный разряд в газе возникает не только в результате перехода от несамостоятельного при повышении напряжения и удалении внешнего источника ионизации, но и при непосредственном приложении напряжения, превышающего пороговое напряжение зажигания. Теория показывает, что для зажигания разряда достаточно самого незначительного количества ионов, которые всегда присутствуют в нейтральном газе хотя бы из-за естественного радиоактивного фона.

В зависимости от свойств и давления газа, конфигурации электродов и приложенного к электродам напряжения возможны различные виды самостоятельного разряда.

Тлеющий разряд. При низких давлениях (десятые и сотые доли миллиметра ртутного столба) в трубке наблюдается тлеющий разряд. Для зажигания тлеющего разряда достаточно напряжения в несколько сотен или даже десятков вольт. В тлеющем разряде можно выделить четыре характерные области. Это темное катодное пространство, тлеющее (или отрицательное) свечение, фарадеево темное пространство и светящийся положительный столб, занимающий большую часть пространства между анодом и катодом.

Первые три области находятся вблизи катода. Именно здесь происходит резкое падение потенциала, связанное с большой концентрацией положительных ионов на границе катодного темного пространства и тлеющего свечения. Электроны, ускоренные в области катодного темного пространства, производят в области тлеющего свечения интенсивную ударную ионизацию. Тлеющее свечение обусловлено рекомбинацией ионов и электронов в нейтральные атомы или молекулы. Для положительного столба разряда характерно незначительное падение потенциала и свечение, вызываемое возвращением возбужденных атомов или молекул газа в основное состояние.

Коронный разряд. При сравнительно высоких давлениях в газе (порядка атмосферного) вблизи заостренных участков проводника, где электрическое поле сильно неоднородно, наблюдается разряд, светящаяся область которого напоминает корону. Коронный разряд иногда возникает в естественных условиях на верхушках деревьев, корабельных мачтах и т. п. («огни святого Эльма»). С коронным разрядом приходится считаться в технике высоких напряжений, когда этот разряд возникает вокруг проводов высоковольтных линий электропередачи и приводит к потерям электроэнергии. Полезное практическое применение коронный разряд находит в электрофильтрах для очистки промышленных газов от примесей твердых и жидких частиц.

При увеличении напряжения между электродами коронный разряд переходит в искровой с полным пробоем промежутка между

электродами. Он имеет вид пучка ярких зигзагообразных разветвляющихся каналов, мгновенно пронизывающих разрядный промежуток и прихотливо сменяющих друг друга. Искровой разряд сопровождается выделением большого количества теплоты, ярким голубовато-белым свечением и сильным потрескиванием. Его можно наблюдать между шариками электрофорной машины. Пример гигантского искрового разряда - естественная молния, где сила тока достигает 5-105 А, а разность потенциалов - 109 В.

Поскольку искровой разряд происходит при атмосферном (и более высоком) давлении, то напряжение зажигания весьма велико: в сухом воздухе при расстоянии между электродами 1 см оно составляет около 30 кВ.

Электрическая дуга. Специфическим практически важным видом самостоятельного газового разряда является электрическая дуга. При соприкосновении двух угольных или металлических электродов в месте их контакта выделяется большое количество теплоты из-за большого сопротивления контакта. В результате начинается термоэлектронная эмиссия и при раздвижении электродов между ними возникает ярко светящаяся дуга из сильно ионизованного хорошо проводящего газа. Сила тока даже в небольшой дуге достигает нескольких ампер, а в большой дуге - нескольких сотен ампер при напряжении порядка 50 В. Электрическая дуга широко применяется в технике как мощный источник света, в электропечах и для электросварки. слабое задерживающее поле с напряжением около 0,5 В. Это поле препятствует попаданию на анод медленных электронов. Электроны испускаются катодом К, подогреваемым электрическим током.

На рис. 105 показана полученная в этих опытах зависимость силы тока в анодной цепи от ускоряющего напряжения Эта зависимость имеет немонотонный характер с максимумами при напряжениях кратных 4,9 В.

Дискретность уровней энергии атома. Объяснить такую зависимость тока от напряжения можно лишь наличием у атомов ртути дискретных стационарных состояний. Если бы дискретных стационарных состояний у атома не было, т. е. его внутренняя энергия могла бы принимать любые значения, то неупругие столкновения, сопровождающиеся увеличением внутренней энергии атома, могли бы происходить при любых энергиях электронов. Если же дискретные состояния есть, то столкновения электронов с атомами могут быть только упругими, пока энергия электронов недостаточна для перевода атома из основного состояния в наинизшее возбужденное.

При упругих столкновениях кинетическая энергия электронов практически не меняется, так как масса электрона много меньше массы атома ртути. В этих условиях число электронов, достигающих анода, монотонно увеличивается с ростом напряжения. Когда ускоряющее напряжение достигает значения 4,9 В, столкновения электронов с атомами становятся неупругими. Внутренняя энергия атомов скачком увеличивается, а электрон в результате соударения теряет почти всю свою кинетическую энергию.

Задерживающее поле не пропускает также медленные электроны к аноду и сила тока резко уменьшается. Она не обращается в нуль лишь потому, что часть электронов достигает сетки, не испытав неупругих соударений. Второй и последующие максимумы силы тока получаются потому, что при напряжениях, кратных 4,9 В, электроны на пути к сетке могут испытать несколько неупругих столкновений с атомами ртути.

Итак, необходимую для неупругого соударения энергию электрон приобретает только после прохождения разности потенциалов 4,9 В. Это означает, что внутренняя энергия атомов ртути не может измениться на величину, меньшую эВ, что и доказывает дискретность энергетического спектра атома. Справедливость этого вывода подтверждается еще и тем, что при напряжении 4,9 В разряд начинает светиться: возбужденные атомы при спонтанных

переходах в основное состояние излучают видимый свет, частота которого совпадает с вычисленной по формуле

В классических опытах Франка и Герца методом электронного удара были определены не только потенциалы возбуждения, но и ионизационные потенциалы ряда атомов.

Приведите пример опыта по электростатике, из которого можно сделать вывод о том, что сухой воздух - это хороший изолятор.

Где в технике используются изолирующие свойства воздуха?

Что такое несамостоятельный газовый разряд? При каких условиях он протекает?

Поясните, почему скорость убывания концентрации, обусловленная рекомбинацией, пропорциональна квадрату концентрации электронов и ионов. Почему эти концентрации можно считать одинаковыми?

Почему для закона убывания концентрации, выражаемого формулой (3), не имеет смысла вводить понятие характерного времени, широко используемого для экспоненциально затухающих процессов, хотя и в том и в другом случае процессы продолжаются, вообще говоря, бесконечно долго?

Как по-вашему, почему в определениях подвижностей в формулах (4) для электронов и ионов выбраны противоположные знаки?

Как сила тока при несамостоятельном газовом разряде зависит от приложенного напряжения? Почему с ростом напряжения происходит переход от закона Ома к току насыщения?

Электрический ток в газе осуществляется как электронами, так и ионами. Однако на каждый из электродов приходят заряды лишь одного знака. Как это согласуется с тем, что во всех участках последовательной цепи сила тока одинакова?

Почему в ионизации газа в разряде из-за соударений наибольшую роль играют электроны, а не положительные ионы?

Опишите характерные признаки различных видов самостоятельного газового разряда.

Почему результаты опытов Франка и Герца свидетельствуют о дискретности уровней энергии атомов?

Опишите физические процессы, происходящие в газоразрядной трубке в опытах Франка и Герца, при повышении ускоряющего напряжения.

Проведем следующий опыт.

картинка

Присоединим электрометр к дискам плоского конденсатора. После этого зарядим конденсатор. При обычной температуре и сухом воздухе конденсатор будет разряжаться очень медленно. Из этого можно сделать вывод, что ток в воздухе между дисками очень мал.

Следовательно, в обычных условиях газ является диэлектриком. Если теперь нагреть воздух между пластин конденсатора, то стрелка электрометра быстро приблизится к нулю, и, следовательно, конденсатор разрядится. Значит, в нагретом газе устанавливается электрический ток, и такой газ будет являться проводником.

Электрический ток в газах

Газовый разряд – процесс прохождения тока через газ. Из опыта видно, что с увеличением температуры проводимость воздуха увеличивается. Помимо нагревания, проводимость газа можно увеличить и другими способами, например, действием излучений.

В обычных условиях газы в основном состоят из нейтральных атомов и молекул, и поэтому являются диэлектриками. Когда мы воздействуем на газ излучением или нагреваем его, часть атомов начинают распадаться на положительные ионы и электроны – ионизироваться. Ионизация газа происходит вследствие того, что при нагревании скорость молекул и атомов увеличивается очень сильно, и при столкновениях друг с другом они распадаются на ионы.

Проводимость газа

Проводимость в газах осуществляется в основном электронами. В газах сочетаются два вида проводимости: электронная и ионная. В отличии от растворов электролитов, в газах образование ионов происходит либо при нагревании, либо за счет действия внешних ионизаторов – излучений, в то время, как в растворах электролитов образование ионов вызвано ослаблением межмолекулярных связей.

Если в какой-то момент ионизатор прекратит свое действие на газ, то ток тоже прекратится. При этом положительно заряженные ионы и электроны могут опять объединиться – рекомбинировать. Если отсутствует внешнее поле, то заряженные частицы будут исчезать только вследствие рекомбинации.

Если действие ионизатора не будет прерываться, то установится динамическое равновесие. В состоянии динамического равновесия, число вновь образующихся пар частиц (ионов и электронов) будет равняться числу исчезающих пар - вследствие рекомбинации.

Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.

Понятие электрического тока

При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.

Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.

Рис. 1. Формула силы тока

Электрический ток в газах

Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».

Самостоятельные и несамостоятельные газовые разряды

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий – самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий – если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация – обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Рис. 2. Тлеющий разряд

  • Дуговой – сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Рис. 3. Дуговой разряд

  • Искровой – можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Что мы узнали?

Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.

Включайся в дискуссию
Читайте также
Шейные позвонки человека и жирафа
Из скольких позвонков состоит шейный отдел жирафа
Упражнения по чтению гласных в четырех типах слога