Подпишись и читай
самые интересные
статьи первым!

Методы совмещения плоскостей проекций метод монжа. Метод Монжа, комплексный чертеж

МОНЖ, ГАСПАР

(Monge, Gaspard) (1746-1818), французский математик, создатель начертательной геометрии. Родился 9 мая 1746 в Боне. Учился в коллежах Боне и Лиона, в последнем с 16 лет преподавал математику. С 1764 работал в Мезьерской военно-инженерной школе, где занимался задачей расчета рельефа крепостных сооружений. Решая эту задачу, он создал новую область проективной геометрии, названную впоследствии начертательной геометрией. В 1769 Монж получил в инженерной школе пост профессора математики, в 1770 - профессора физики. В 1780 Парижская академия наук избрала его своим действительным членом. В 1794 он стал директором только что основанной Политехнической школы, в которой читал лекции более десяти лет. Монж в течение 8 месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798-1801). Наполеон присвоил ему титул графа, даровал поместья, удостоил многих других отличий. Во время "Ста дней" Монж решительно встал на сторону Наполеона. В период Реставрации был лишен всех званий и наград и изгнан из Политехнической школы и Академии наук. Умер Монж в Париже 28 июля 1818.

Основные труды Монжа относятся к области начертательной геометрии и ее применениям к решению инженерных задач. Исходя из идеи проецирования предметов на две взаимно перпендикулярных плоскости, Монж создал общий метод изображения пространственных фигур на плоскости. Эта работа была выполнена им еще в Мезьерской школе, но опубликована только в 1799 под названием Начертательная геометрия (Gomtrie descriptive). Еще один важный труд Монжа - Приложение анализа к геометрии (L"application de l"analyse la gometrie, 1795), где помимо открытий по дифференциальной геометрии дано геометрическое истолкование уравнений в частных производных. Это направление было продолжено в трудах таких математиков, как К.Гаусс, Я.Штейнер и Ю.Плюккер. Немалое значение имели также работы Монжа по интегрированию дифференциальных уравнений в частных производных и их представлению на языке геометрии. Известны его исследования в области физики, химии, оптики, метрологии и практической механики.

Кольер. Словарь Кольера. 2012

Смотрите еще толкования, синонимы, значения слова и что такое МОНЖ, ГАСПАР в русском языке в словарях, энциклопедиях и справочниках:

  • МОНЖ ГАСПАР
    (Monge) Гаспар (10.5.1746, Бон, Кот-д"Ор, - 28.7.1818, Париж), французский математик и общественный деятель, член Парижской АН (1780). Профессор Мезьерской военно-инженерной …
  • МОНЖ ГАСПАР
    (1746—1818) — франц. геометр. Первоначальное образование получил в городском училище г. Бона. Преподавание в этом училище сосредоточивалось почти исключительно на …
  • МОНЖ ГАСПАР
    (1746?1818) ? франц. геометр. Первоначальное образование получил в городском училище г. Бона. Преподавание в этом училище сосредоточивалось почти исключительно на …
  • ГАСПАР в Словаре значений Армянских имен:
    (муж.) "Идущий …
  • МОНЖ в Большом энциклопедическом словаре:
    (Monge) Гаспар (1746-1818) французский математик и инженер. Один из основателей Высшей нормальной и Политехнической школ в Париже (1794). Создал начертательную …
  • МОНЖ в Большом российском энциклопедическом словаре:
    (Monge) Гаспар (1746-1818), франц. математик и инженер. Один из основателей Высш. нормальной и Политехн. школ в Париже (1794). Создал начертат. …
  • МОНЖ в Современном толковом словаре, БСЭ:
    (Monge) Гаспар (1746-1818) , французский математик и инженер. Один из основателей Высшей нормальной и Политехнической школ в Париже (1794). Создал …
  • РАВЕССОН-МОЛЬЕН (НАСТ. ФАМИЛИЯ ЛА-ШЕ), ЖАН ГАСПАР ФЕЛИКС в Датах рождения и смерти известных людей:
    (1813 - 1900) - французский философ, археолог, …
  • ШОМЕТТ ПЬЕР ГАСПАР в Большой советской энциклопедии, БСЭ:
    (Chaumette) Пьер Гаспар (во время революции принял имя Анаксагор) (24.5.1763, Невер, - 13.4.1794, Париж), деятель Великой французской революции, левый якобинец. …
  • ХОВЕЛЬЯНОС-И-РАМИРЕС ГАСПАР МЕЛЬЧОР ДЕ в Большой советской энциклопедии, БСЭ:
    (Jovellanos у Ramirez) Гаспар Мельчор де (5.1.1744, Хихон, - 27.11.1811, Вега, Астурия), испанский просветитель, государственный и политический деятель; поэт, драматург, …
  • ФРАНСИА ХОСЕ ГАСПАР в Большой советской энциклопедии, БСЭ:
    Родригес Франсиа (Rodriguez Francia) Хосе Гаспар (6.1.1766, Асунсьон, - 20.9.1840, там же), государственный деятель Парагвая. Родился в семье среднего чиновника-землевладельца. …
  • ОЛИВАРЕС ГАСПАР ДЕ ГУСМАН в Большой советской энциклопедии, БСЭ:
    (Olivares) Гаспар де Гусман (Guzman) (6.1.1587, Рим, - 22.7.1645, Торо), граф, испанский государственный деятель. Фаворит Филиппа IV. Герцог (с 1621). …
  • НАДАР ГАСПАР ФЕЛИКС в Большой советской энциклопедии, БСЭ:
    (Nadar; настоящая фамилия - Турнашон, Tournachon) Гаспар Феликс (5.4.1820, Париж, - 20.3.1910, там же), французский мастер фотоискусства, график-карикатурист, журналист. С …
  • КОРИОЛИС ГЮСТАВ ГАСПАР в Большой советской энциклопедии, БСЭ:
    (Coriolis) Гюстав Гаспар (21.5.1792, Париж, - 19.9.1843, там же), французский механик, член Парижской АН (1836). С 1838 руководил занятиями в …
  • КОЛИНЬИ ГАСПАР ДЕ ШАТИЙОН в Большой советской энциклопедии, БСЭ:
    (Coligny) Гаспар де Шатийон (16. 2 . 1519, Шатийон-сюр-Луэн,-24.8.1572, Париж), один из вождей гугенотов во Франции. Участвовал в Итальянских войнах …
  • КАСАДО ГАСПАР в Большой советской энциклопедии, БСЭ:
    (Cassado) Гаспар (30.9.1897, Барселона, - 24.12.1966, Мадрид), испанский виолончелист и композитор. Начальное музыкальное образование получил у отца - Хоакина К., …
  • ДЕБЮРО ЖАН БАТИСТ ГАСПАР в Большой советской энциклопедии, БСЭ:
    (Deburau) Жан Батист Гаспар (31.7.1796, Колин, Австро-Венгрия, ныне Чехословакия, - 17.6.1846, Париж), французский актёр-мим. Родился в семье бродячих артистов-акробатов. С …
  • ПУССЕН, ГАСПАР в Энциклопедическом словаре Брокгауза и Евфрона:
    (Poussin) — прозвище, под которым известен французский пейзажист Г. Дюге (Dughet, 1613 — 1675), шурин, ученик и подражатель Никола П. …
  • ФЮРСТЕНАУ, ГАСПАР в Энциклопедии Брокгауза и Ефрона:
    (F u rstenau, 1772?1819) ? известный флейтист-виртуоз; учился игре на гобое у своего отца и Антона Ромберга, затем стал изучать …
  • ТАВАНН, ГАСПАР в Энциклопедии Брокгауза и Ефрона:
    (де Со Tavannes) ? маршал Франции (1509?1573). Участвовал в войнах Франциска I с Карлом V, при Франциске II приобрел известность …
  • ПУССЕН, ГАСПАР в Энциклопедии Брокгауза и Ефрона:
    (Poussin) ? прозвище, под которым известен французский пейзажист Г. Дюге (Dughet, 1613 ? 1675), шурин, ученик и подражатель Никола П. …
  • ДЮГЕ, ГАСПАР в Словаре Кольера:
    (Dughet, Gaspard) (1615-1675), французский живописец, родился в Риме 6 июня 1615. Иногда его называли Гаспар Пуссен, по имени его знаменитого …
  • ПРАКТИКА в Новейшем философском словаре:
    категория, которая может быть отнесена ко всей сфере человеческой деятельности и мышления, но обычно ее употребление конкретизируется через категориальные оппозиции: …
  • РОЖДЕСТВЕНСКИЙ ПОСТ в Словаре Обрядов и таинств:
    (28 ноября - 6 января) Начинается на следующий день после дня памяти св. апостола Филиппа (27 ноября) и называется в …
  • ЛАНГРСКАЯ ЕПАРХИЯ в Православной энциклопедии Древо:
    Открытая православная энциклопедия "ДРЕВО". Лангрская епархия Римско-католической церкви. История Лангрской епархии восходит ко II веку. Она была одной из …
  • ВОЛХВЫ в Православной энциклопедии Древо.
  • БЕРТРАН ЛУИ в Справочнике Персонажей и культовых объектов греческой мифологии:
    (20.04.1807-), французский писатель («Гаспар ночи», «Патриот Золотого …
  • 1769.08.02
    Гаспар де ПОРТОЛА и Хуан КРЕСПИ - капитан испанской армии и священник-францисканец - делают остановку по пути в Сан-Диего. Понравившееся …
  • 1769.07.16 в Страницах истории Что, где, когда:
    Испанский исследователь Гаспар де ПОРТОЛА основывает базу Сан-Диего для исследования …
  • ЭЙЛЕР ЛЕОНАРД в Большой советской энциклопедии, БСЭ:
    (Euler) Леонард , математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование …
  • ФРАНЦИЯ в Большой советской энциклопедии, БСЭ.
  • НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ в Большой советской энциклопедии, БСЭ:
    геометрия, раздел геометрии, в котором пространственные фигуры изучаются при помощи построения их изображений на плоскости, в частности построения проекционных …
  • МЕТРИЧЕСКАЯ СИСТЕМА МЕР в Большой советской энциклопедии, БСЭ:
    система мер, десятичная система мер, совокупность единиц физических величин, в основу которой положена единица длины - метр. Первоначально в …
  • МАТЕМАТИЧЕСКИЕ РАЗВЛЕЧЕНИЯ И ИГРЫ в Большой советской энциклопедии, БСЭ:
    развлечения и игры. Математическими развлечениями называют обычно разнообразные задачи и упражнения занимательного характера, требующие проявления находчивости, смекалки, оригинальности мышления, …
  • МАТЕМАТИКА в Большой советской энциклопедии, БСЭ:
    I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от mathema - знание, наука), наука о …
  • ЛАВУАЗЬЕ АНТУАН ЛОРАН в Большой советской энциклопедии, БСЭ:
    (Lavoisier) Антуан Лоран (26.8.1743, Париж, - 8.5.1794, там же), французский химик, член Парижской АН (1772; адъюнкт 1768). Окончил юридический факультет …
  • ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ в Большой советской энциклопедии, БСЭ:
    геометрия, раздел геометрии, в котором геометрические образы изучаются методами математического анализа. Главными объектами Д. г. являются произвольные достаточно гладкие кривые …
  • ГЕОМЕТРИЯ в Большой советской энциклопедии, БСЭ:
    (греч. geometria, от ge - Земля и metreo - мерю), раздел математики, изучающий пространственные отношения и формы, а также другие …
  • АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ в Большой советской энциклопедии, БСЭ:
    геометрия, раздел геометрии. Основными понятиями А. г. являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности второго порядка). Основными …
  • ШИЛЛЕР, ИОГАНН ФРИДРИХ в Энциклопедическом словаре Брокгауза и Евфрона:
    (Schiller) — великий немецкий поэт; род. 10 ноября 1759 г. в Марбахе в Вюртемберге. Отец его, Иоганн Гаспар, начал карьеру …
  • ХИЛЬ-ПОЛО в Энциклопедическом словаре Брокгауза и Евфрона:
    (Гаспар) — испан. поэт и юрист (1516—71) — см. Поло …
  • ФЛАМАНДСКАЯ ЖИВОПИСЬ в Энциклопедическом словаре Брокгауза и Евфрона:
    После того, как в начале XVII стол. ожесточенная, продолжительная борьба нидерландцев за свою политическую и религиозную свободу завершилась распадением их …
  • ТЕХНИЧЕСКОЕ ОБРАЗОВАНИЕ в Энциклопедическом словаре Брокгауза и Евфрона:
    I один из видов специального образования, для распространения которого существуют школы низшие, средние и высшие: первые два разряда дают необходимые …

Гаспар Монж

После успешного окончания школы ее руководство рекомендовало Гаспара Монжа для дальнейшего обучения в коллеже Святой Троицы в Лионе. Он был принят туда и вскоре стал там (в 16 лет!) преподавателем физики, занимая это место до 1764 года. Для получения специального образования в 18 лет Монж поступил в Военноинженерную школу в Мезьере, но принят он был не в офицерский класс, так как не имел дворянского происхождения, а на отделение, готовившее мастеров и производителей работ. Там учащиеся овладевали основами алгебры, геометрии, черчения, а также изготавливали всевозможные модели зданий и фортификационных сооружений. В Мезьерской школе Монж быстро стал одним из первых учеников. Имея хорошую математическую подготовку, он легко и оригинально мог решать самые сложные задачи.

После окончания учебы Монж был оставлен в Мезьерской школе в качестве преподавателя: сначала ассистентом кафедры математики у профессора Шарля Боссю (1730–1814), а затем и ассистентом кафедры физики у профессора Жана Антуана Нолле (1700–1770). В 1770 году, после смерти Нолле и перевода Боссю на другую работу, Монж стал руководителем сразу обеих этих кафедр. Помимо физики и математики, он читал еще и курс по химии, а также теорию перспективы и теней. Именно в Мезьерский период своей жизни Монж начал развивать идеи начертательной геометрии и нашел для них многочисленные приложения, в частности, для расчетов рельефа крепостных сооружений.

Ученики школы того периода очень любили своего молодого профессора. Он не был красавцем, говорил скороговоркой и не всегда внятно, но зато был очень добр и никогда ни для кого не жалел своего личного времени. Часто на занятиях он подходил к какомулибо зазевавшемуся слушателю со словами: «Друг мой, я повторю с того момента, с которого ты перестал меня понимать».

Профессор Монж умел передавать другим свое увлечение наукой, среди его учеников не было бездельников и отстающих. О своей же карьере он совершенно не заботился.

В 1777 году он женился, а через три года стал преподавателем гидравлики в Луврской школе в Париже. В эти годы он активно занимался вопросами математического анализа, химии, метеорологии, практической механики. За достижения в этих областях Парижская академия наук в 1780 году избрала 34летнего Монжа своим действительным членом.

Участие в заседаниях Академии требовало от молодого ученого постоянного пребывания в Париже, поэтому ему было разрешено по шесть месяцев в году находиться там. Во время отсутствия Монжа лекции в Мезьерской школе читал его младший брат Луи Монж (1748–1827), тоже профессорматематик.

Когда началась Великая французская революция, Монж стал ее пылким сторонником. Эти годы для него были наполнены чрезвычайно активной общественной и практической деятельностью. Сначала он работал в комиссии по установлению новой системы мер и весов, затем стал одним из организаторов национальной обороны и французской военной промышленности. Случилось это при следующих обстоятельствах. 10 августа 1792 года после низложения короля Людовика XVI Монж был избран в состав временного правительства, где получил портфель морского министра. После создания Национального Конвента, окончательно упразднившего королевскую власть, в сентябре того же года он сохранил свой пост министра Республики, ответственного за морской флот. Объяснить подобное назначение далекого от проблем флота ученого можно так: после революции все специалистыаристократы в адмиралтействе разбежались, и нужен был просто преданный нации, авторитетный и честный человек.

Свою обожаемую математику Монж всегда стремился приложить к любой области, в какую бы ни забросила его судьба. Он был энциклопедистом, как и любой ученый того времени, и, став экзаменатором гардемаринов, он не делал будущим морским офицерам никакого снисхождения. Впрочем, флот в то время был не самым приоритетным направлением деятельности правительства. Гораздо больше Франция нуждалась в боеприпасах. При короле этим вопросом занимался гениальный Лавуазье, но его революционеры казнили, оголив тем самым наиважнейший фронт, а без пороха их ружья и пушки стали похожи на бесполезные в настоящем бою палки.

И вот за производство пороха взялся Монж. Вместе с КлодомЛуи Бертолле он придумал, как и где добывать селитру во Франции. Результат оказался поразительным: если до 1789 года Франция потребляла не более миллиона фунтов селитры в год, стараниями Монжа и его сотрудников за десять месяцев ее было добыто 12 миллионов фунтов!

Но получить составляющие части – это еще не решение проблемы. Пороховые мельницы, число которых было весьма ограниченным, не успевали все это переработать. Тогда Монж предложил положить в обыкновенные бочки медные шары. Эти «мельницы в миниатюре» можно было разместить в любом дворе, и Франция его стараниями превратилась в огромный пороховой завод. Конечно, без всеобщего народного воодушевления эта огромная работа не могла бы быть выполнена, но и без гениальной головы Монжа ничего бы не получилось.

Пушки в то время делали из чугуна и бронзы. Чугунные пушки отливать было проще, но они были гораздо тяжелее. Как правило, их использовали на флоте или в крепостях. Число чугуннопушечных заводов Монж увеличил с четырех до тридцати. Вместо 900 орудий в год отливалось 30 тысяч. Число меднопушечных заводов стараниями Монжа возросло с двух до пятнадцати. Они стали выпускать семь тысяч орудий. Для этого в качестве источника меди стали использовать церковные колокола. Правда, состав колокольной меди не подходил для производства пушек, но Монж привлек химиков и нашел новые способы отделять медь от олова. Ранее для производства были необходимы глиняные формы орудий. Монж предложил отливать пушки в песке. Первую пушку, полученную таким способом, испытали на Марсовом поле, и весь Париж рукоплескал успешным результатам. Днем Монж не вылезал из мастерских, по ночам писал наставление «О пушечном искусстве». Все, что не относилось конкретно к вопросам обороны и вооружению армии, казалось несущественным.

Монж стойко переносил голод и холод. Он вообще питался в основном хлебом, позволяя подшучивать над собой. Известна, например, такая шутка: «Монж начал роскошествовать; теперь он ест редиску!»

Однажды мадам Монж узнала, что на ее мужа и Бертолле написан донос. Она побежала к Бертолле, но великий химик лишь задумчиво пробормотал: «Очень возможно, что нас осудят и поведут на гильотину, но это случится не раньше чем через восемь дней».

Почему через восемь дней и что будет через восемь дней, мадам Монж не поняла, но было очевидно, что ученого в это время волновало чтото совсем другое. Сам же Монж в ответ на плач жены сказал: «Самое главное, что мои литейные чудесно работают».

В 1794 году вместе с Бертолле Монж стал основателем и первым профессором Политехнической школы – одного из лучших высших учебных заведений Франции (здесь он читал лекции более десяти лет). Этот вклад Монжа в науку трудно переоценить: в результате его плодотворной организаторской и преподавательской деятельности Политехническая школа быстро стала центром общенаучной подготовки высококвалифицированных специалистов, все крупные инженеры и математики Франции XIX века или окончили эту школу, или были ее преподавателями.

Вернувшись к научной деятельности, Монж посвятил себя начертательной геометрии. Так сейчас называется инженерная дисциплина, состоящая из набора алгоритмов для исследования свойств пространственных геометрических объектов и основанная на представлении этих объектов с помощью двух независимых проекций. Проще говоря, это наука, изучающая пространственные фигуры при помощи их проецирования на плоскости.

Однако основные сочинения Монжа по этому разделу были опубликованы лишь в 1799 году, так как долгие годы правительство Франции сохраняло эту дисциплину в секрете, квалифицируя ее как военную тайну. При этом известно, что свой значительный труд «Приложение анализа к геометрии» Монж создал в 1795 году. Этот труд представлял собой учебник аналитической геометрии, в котором особый акцент делался на дифференциальные уравнения.

В стенах Политехнической школы Монжу удалось добиться, чтобы начертательная геометрия и геометрия вообще стали центральными, определяющими предметами учебного курса. Он умел удивительно ясно и отчетливо излагать самые сложные вопросы.

В годы правления Директории Монж сблизился с Наполеоном и именно благодаря ему достиг больших чинов и славы. Наполеон, как известно, никогда не выдвигал на высокие посты бездельников. А для Монжа он уже тогда был образцом государственного деятеля и полководца. Особо сблизились Наполеон и Монж в 1796 году в Италии, куда последний был направлен Директорией с поручением отобрать для музеев и хранилищ Парижа наиболее выдающиеся произведения науки и искусства.

Когда в 1797 году Наполеон подписал мир с австрийцами, Монж был послан из Милана в Париж для передачи этого документа Директории с целью его ратификации. При этом Наполеон писал о Монже так:

«Гражданин Монж знаменит своими знаниями и своим патриотизмом. Своим поведением в Италии он добился того, что французов зауважали. Он заслужил мою дружбу».

В 1797 году Монж содействовал вступлению Наполеона в Институт Франции (Национальный институт наук и искусств), созданный Конвентом вместо упраздненной в 1793 году «буржуазной» Академии наук.

Когда в октябре 1797 года Монж вернулся из Италии в Париж, он уже был в курсе желания Наполеона «приобщиться к науке» и тут же принялся «готовить общественное мнение». Помогал ему в этом другой преданный Наполеону академик – КлодЛуи Бертолле. Удобный случай подвернулся очень кстати: в рядах академиков образовалось вакантное место. Но на него претендовало еще два человека, причем гораздо более известных в науке, чем генерал Бонапарт. Первым был Жак Диллон (1760–1807) – инженер, построивший первый во Франции железный мост, вторым – 84летний инженер Марк Рене Монталамбер (1713–1799), автор одиннадцатитомного сочинения по фортификации.

Тайное голосование имело место 25 декабря 1797 года: за Наполеона было подано 305 голосов, за Диллона – 166 голосов, за Монталамбера – 123 голоса. Как видим, преданные Монж и Бертолле не подвели: выбрали Наполеона, не имевшего научных трудов и иных заслуг, кроме побед на полях сражений. В газетах после этого было написано, что в академики был избран генерал Бонапарт, «удивительный человек, философ, вставший во главе армии».

Когда Наполеон стал планировать свою Египетскую экспедицию, он, ни минуты не сомневаясь, пригласил Монжа и Бертолле в свою «команду». Те с радостью согласились.

Для участия в экспедиции было привлечено около 150 ученых и специалистов, представлявших более пятнадцати различных профессий.

Историк Жан Тюлар приводит следующие данные:

«В путешествии приняли участие отобранные Монжем и Бертолле 21 математик, 3 астронома, 17 инженеровстроителей, 13 натуралистов и горных инженеров, столько же географов, 3 химика, специалисты по пороху и селитре, 4 архитектора, 8 рисовальщиков, 10 механиков, 1 скульптор, 15 переводчиков, 10 литераторов, 22 наборщика».

Список имен ученых, поехавших с Наполеоном в Египет, впечатляет. Во главе его стояли Монж и Бертолле. Под их началом находились математики Жан Батист Жозеф Фурье (1768–1830) и Луи Костаз (1767–1842), химики Ипполит Колле Декотиль (1773–1815) и Жак Пьер Шампи (1744–1816), натуралист Этьен Жоффруа Сент Илер (1772–1844), астрономы Николя Антуан Нуэ (1740–1811) и Пьер Жозеф де Бошан (1752–1801), геолог Деода де Доломьё (1750–1801), художники Доминик Виван Денон (1747–1825), Анри Жозеф Редуте (1766–1852) и Андре Дютертр (1753–1842).

А многие светила французской науки, кстати сказать, отказались. В число «отказников» вошли, например, инженерматематик Гаспар де Прони (1755–1839), химик Антуан Франсуа Фуркруа (1755–1809), естествоиспытатели Жорж Леопольд Кювье (1769–1832) и Фредерик Кювье (1773–1838).

Разумеется, у каждого на то были свои резоны. «Мой расчет, – объяснял свой отказ ЖоржЛеопольд Кювье, – таков: я сейчас нахожусь в центре наук, среди самых замечательных коллекций и уверен, что здесь, в Париже, сделаю куда более важные открытия, чем участвуя даже в самом плодотворном путешествии».

Уже в Каире Монж стал одним из основателей Института Египта.

Институт Египта – это было очень важное научноисследовательское заведение, состоявшее из четырех отделений: математики, физики, политической экономии, литературы и искусств. Вицепрезидентом Института стал сам Наполеон, а президентом – Монж. Открытие этой «академии» было весьма торжественным, и при этом Наполеон заявил, что «торжество над невежеством есть величайшее из торжеств, а успехи его оружия – суть успехи просвещения».

В Египте Монж фактически стал правой рукой Наполеона. Много времени они проводили в научных дискуссиях, вместе ездили в Суэц, чтобы увидеть следы древнего канала, некогда соединявшего Нил с Красным морем.

Метод Монжа использует метод прямоугольных проекций или метод ортогонального проецирования геометрического образа (точки, прямой, плоскости, поверхности) на две взаимно перпендикулярные и взаимно связанные плоскости проекции лучами перпендикулярными этим плоскостям проекций, в этом состоит сущность метода Монжа:

Рис. 18 Метод Монжа: H - горизонтальная плоскость проекции; V - фронтальная плоскость проекции; W - профильная плоскость проекции.

Линии пересечения плоскостей проекции называются осью проекции или осью координат:

А`- проекция точки А на плоскость H (горизонтальная проекция точки А);

А"- проекция точки А на плоскость V (фронтальная проекция точки А);

А"`- проекция точки А на плоскость W (профильная проекция точки А).

Методы проецирования с использованием одно-картинных чертежей позволяют решать прямую задачу (т.е. по данному оригиналу построить его проекцию). Однако, обратную задачу (т.е. по проекции воспроизвести оригинал) решить однозначно невозможно. Эта задача допускает бесчисленное множество решений, т.к. каждую точку Аб плоскости проекций б можно считать проекцией любой точки проецирующего луча SАб, проходящего через Аб.

Таким образом, рассмотренные одно-картинные чертежи не обладают свойством обратимости.

Для получения обратимых одно-картинных чертежей их дополняют необходимыми данными.

Существуют различные способы такого дополнения. Например, чертежи с числовыми отметками.

Способ заключается в том, что наряду с проекцией точки А1 задаётся высота точки, т.е. её расстояние от плоскости проекций. Задают, также, масштаб.

Такой способ используется в строительстве, архитектуре, геодезии и т. д. Однако, он не является универсальным для создания чертежей сложных пространственных форм.

Рис. 19

В 1798 году французский геометр-инженер Гаспар Монж, обобщив накопленные к этому времени теоретические знания и опыт, впервые дал научное обоснование общего метода построения изображений, предложив рассматривать плоский чертёж, состоящий из двух проекций, как результат совмещения с плоскостью двух взаимно связанных взаимно перпендикулярных плоскостей проекций.

Отсюда ведёт начало принцип построения чертежей, получивший название Метод Монжа, которым выше было сказано, что проекция точки не определяет положения точки в пространстве, и чтобы, имея проекцию точки, установить это положение, требуются дополнительные условия. Например, дана прямоугольная проекция точки на горизонтальной плоскости проекций и указано удаление этой точки от плоскости числовой отметкой; плоскость проекций принимается за «плоскость нулевого уровня», и числовая отметка считается положительной, если точка в пространстве выше плоскости нулевого уровня, и отрицательной, если точка ниже этой плоскости.

На этом основан метод проекций с числовыми отметками ").

В дальнейшем изложении определение положения точек в пространстве будет производиться по их прямоугольным проекциям на двух и более плоскостях проекций.

На рис. 20 изображены две взаимно перпендикулярные плоскости. Примем их за плоскости проекций. Одна из них, обозначенная буквой к1, расположена горизонтально; другая, обозначенная буквой я2,-- вертикально. Эту плоскость называют фронталыюй плоскостью проекций, пл. я, называют горизонтальной плоскостью проекций. Плоскости проекции Kj И Я2 образуют с истему Kj, я2.

Линия пересечения плоскостей проекций называется осью проекций. Ось проекций разделяет каждую из плоскостей Я! и я2 на полуплоскости. Для этой оси будем применять обозначение л или обозначение в виде дроби я2/яj. Из четырех двугранных углов, образованных плоскостями проекций, считается первым тот, грани которого на рис. 9 имеют обозначения Я! и я2.

На рис. 10 показано построение проекций некоторой точки А в системе я15 я2. Проведя из А перпендикуляры к itj и я2, получаем проекции точки А: горизонтальную, обозначенную А", и фронтальную, обозначенную А".

Проецирующие прямые, соответственно перпендикулярные к л, и я2, определяют плоскость, перпендикулярную к плоскостям и к оси проекций. Эта плоскость в пересечении с я, и я2 образует две взаимно перпендикулярные прямые А"АХ и А"АХ, пересекающиеся в точке Ах на оси проекций. Следовательно, проекции некоторой точки получаются расположенными на прямых, перпендикулярных к оси проекций и пересекающих эту ось в одной и той же точке.

Метод проекций с числовыми отметками в программу излагаемого курса не входит. Интересующихся отсылаем к книгам по начертательной геометрии для строительных и архитектурных специальностей.

Если даны проекции А" и А" некоторой точки А (рис. 21), то, проведя перпендикуляры -- через А" к пл. TCj и через А" к пл. л2 -- получим в пересечении этих перпендикуляров определенную точку. Итак, две проекции точки вполне определяют ее положение в пространстве относительно данной системы плоскостей проекций.

Повернув пл. Kj вокруг оси проекций на угол 90° (как это показано на рис. 22), получим одну плоскость -- плоскость чертежа; проекции А" и А" расположатся на одном перпендикуляре к оси проекций -- на линии связи. В результате указанного совмещения плоскостей я, и л2 получается чертеж, известный под названием эпюр ") (эпюр Монжа). Это чертеж в системе 2 (или в системе двух прямоугольных проекций).

Перейдя к эпюру, мы утратили пространственную картину расположения плоскостей проекций и точки. Но, как увидим дальше, эпюр обеспечивает точность и удобоизмеримость изображений при значительной простоте построений. Чтобы представить по нему пространственную картину, требуется работа воображения.

Так как при наличии оси проекций положение точки А относительно плоскостей проекций Tij и п2 установлено, то отрезок А"АХ выражает расстояние точки А от плоскости проекций л2, а отрезок А"АХ -- расстояние точки А от плоскости проекций п^ Так же можно определить расстояние точки А от оси проекций. Оно выражается гипотенузой треугольника, построенного по катетам А"АХ и А"АХ (рис. 23): откладывая на эпюре отрезок А"А, равный А"АХ, перпендикулярно к А"АХ, получаем гипотенузу ААХ, выражающую искомое расстояние.

Следует обратить внимание на необходимость проведения линии связи между проекциями точки: только при наличии этой линии, взаимосвязывающей проекции, получается возможность установить положение определяемой ими точки.

Условимся в дальнейшем эпюр Монжа, а также проекционные чертежи, в основе которых лежит метод Монжа (см. § 3), называть одним словом -- чертеж и понимать это только в указанном смысле. В других случаях применения слова «чертеж» оно будет сопровождаться соответствующим определением (перспективный чертеж, аксонометрический чертеж и т. п.).

Ёриге (франц.) -- чертеж, проект. Иногда вместо «эпюр» пишут и произносят «эпюра», что соответствует не произношению слова ёриге, а женскому роду этого слова во французском языке.

Метод Монжа, или метод проекций является методом параллельного проецирования, причем берутся прямоугольные проекции на две взаимно перпендикулярные плоскости проекций. Плоскость, расположенная горизонтально называется горизонтальной плоскостью проекций (обозначаем П1), а плоскость, расположенная вертикально, называется фронтальной плоскостью проекций (обозначаем П2).

Линия пересечения плоскостей проекций называется осью проекций. Ось проекций разделяет каждую из плоскостей П1 и П2 на полуплоскости. Для этой оси применяется обозначение X (рисунок 3). На рисунке 4 показано построение проекций некоторой точки А в системе П1, П2.

Рисунок 3 Рисунок 4

Проекцию точки А на горизонтальную плоскость проекций получают с помощью проецирующего луча, который проводят через точку А перпендикулярно П1 до пересечения с ней. Точка пересечения называется горизонтальной проекцией точки А и обозначается А1.

Фронтальная проекция точки А получается при пересечении проецирующего луча, проведенного через точку А перпендикулярно П2 и обозначается А2.

Очень часто рассматриваются и профильные проекции точек и прямых. Профильная плоскость проекций (П3) располагается перпендикулярно к обеим плоскостям проекций (рисунок 5).

Линии пересечения плоскостей проекций называют осями проекций. Всего осей - три: ось ОХ, ось ОУ и ось ОZ.

Рисунок 5 Рисунок 6

Если точку А спроецировать на все три плоскости проекций, то получим три проекции точки А – горизонтальную А1, фронтальную А2 и профильную А3 (рисунок 6). Если нужно построить комплексный чертеж или эпюр Монжа (это одно и то же) для точки А, то пространственное или наглядное изображение нужно преобразовать в плоскостное. На рисунке 7, показано, как при разворачиваются плоскости проекций: фронтальная плоскость остается на месте, горизонтальная преобразуется поворотом на 90 градусов вокруг оси ОХ до совмещения с фронтальной плоскостью, а профильная поворачивается на 90 градусов вправо вокруг оси ОZ до совмещения с фронтальной. При этом ось проекций ОУ как бы раздваивается - она участвует в образовании горизонтальной плоскости проекций и необходима для профильной плоскости проекций.

Рисунок 7 Рисунок 8

Таким образом, эпюр точки будет выглядеть как на рисунке 8. Причем, надо обратить внимание на то, что расстояние от точки А до плоскости П1 будет выражаться координатой Z, расстояние от точки А до плоскости П2 будет выражаться координатой У, а до плоскости П3 - координатой Х.

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.

Изложенный Монжем метод - метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, - обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей.

Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной. Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).

Лекция 7, СРСП-7

2. Расположение прямой относительно плоскостей проекций.

3. Взаимное расположение точки и прямой, двух прямых.

Проецирование прямой

Для определения положения прямой в пространстве существуют следующие методы: 1.Двумя точками (А и В). Рассмотрим две точки в пространстве А и В (рис.). Через эти точки можно провести прямую линию получим отрезок . Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: <; <; <.

2. Двумя плоскостями (a; b). Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

3. Точкой и углами наклона к плоскостям проекций. Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве.

Взависимости от положения прямой по отношению к плоскостям проекций она может занимать как общее, так и частные положения. 1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.).

2. Прямые параллельные плоскостям проекций, занимают частное положение в прострнстве и называются прямыми уровня. В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.).

2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями(рис.).

2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис.).

3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

3.1. Фронтально-проецирующая прямая - АВ (рис.).

3.2. Профильно проецирующая прямая - АВ (рис.).

Включайся в дискуссию
Читайте также
Приснился ребенок во сне
Митрополит (Сурожский) Антоний
Шуточный гороскоп о том, как мстят разные знаки зодиака