Подпишись и читай
самые интересные
статьи первым!

До какой глубины в Мировом океане простирается зона фотосинтеза. КПД фотосинтеза в наземных и морских экосистемах

Жизнь в океане представлена самыми различными организмами – от микроскопических одноклеточных водорослей и крошечных животных до китов, превышающих в длину 30 м и превосходящих по размерам любое животное, жившее когда-либо на суше, включая самых крупных динозавров. Живые организмы населяют океан от поверхности до наибольших глубин. Но из растительных организмов только бактерии и некоторые низшие грибы встречаются в океане повсеместно. Остальные растительные организмы населяют только верхний освещенный слой океана (главным образом до глубины около 50-100 м), в котором может осуществляться фотосинтез. Фотосинтезирующие растения создают первичную продукцию, за счёт которой существует всё остальное население океана.

В Мировом океане обитает около 10 тыс. видов растений. В фитопланктоне преобладают диатомовые водоросли, перидинеи и кокколитофориды из жгутиковых. Донные растения включают главным образом диатомовые, зелёные, бурые и красные водоросли, а также несколько видов травянистых цветковых растений (например, зостеру).

Животный мир океана ещё более разнообразен. В океане обитают представители почти всех классов современных свободноживущих животных, а многие классы известны только в океане. Некоторые из них, например кистеперая рыба целакант, представляют собой живые ископаемые, предки которых процветали здесь более 300 млн. лет назад; другие появились совсем недавно. Фауна включает более 160 тыс. видов: около 15 тыс. простейших (главным образом радиолярии, фораминиферы, инфузории), 5 тыс. губок, около 9 тыс. кишечнополостных, более 7 тыс. различных червей, 80 тыс. моллюсков, более 20 тыс. ракообразных, 6 тыс. иглокожих и менее многочисленные представителей ряда других групп беспозвоночных (мшанок, брахиопод, погонофор, оболочниковых и некоторых других), около 16 тыс. рыб. Из позвоночных животных в океане, кроме рыб, обитают черепахи и змеи (около 50 видов) и более 100 видов млекопитающих, главным образом китообразных и ластоногих. Постоянно связана с океаном жизнь некоторых птиц (пингвинов, альбатросов, чаек и др. - около 240 видов).

Наибольшее видовое разнообразие животных характерно для тропических районов. Донная фауна особенно разнообразна на мелководных коралловых рифах. По мере увеличения глубины разнообразие жизни в океане убывает. На самых больших глубинах (более 9000-10000 м) обитают лишь бактерии и несколько десятков видов беспозвоночных животных.

В состав живых организмов входят не менее 60 химических элементов, главные из которых (биогенные элементы) - это C, O, H, N, S, P, K, Fe, Ca и некоторые другие. Живые организмы приспособились к жизни при экстремальных условиях. Бактерии встречаются даже в океанских гидротермах при Т = 200-250 о С. В глубочайших впадинах морские организмы приспособились жить при огромных давлениях.

Однако обитатели суши намного опередили по видовому разнообразию жителей океана, и прежде всего за счет насекомых, птиц и млекопитающих. В целом число видов организмов суши по крайней мере на порядок больше, чем в океане: один-два миллиона видов на суше против нескольких сот тысяч видов, обитающих в океане. Это связано с большим разнообразием мест обитания и экологических условий на суше. Но в то же время в море отмечается значительно большее раз­нообразие жизненных форм растений и животных. Две основные группы морских растений - бурые и красные водоросли - в пресных водах совсем не встречаются. Исключительно морскими являются иглокожие, хетогнаты и щетинкочелюстные, а также низшие хордовые организмы. В океане в огромных количествах живут мидии и устрицы, которые добывают себе пищу, отфильтровывая органические частицы из воды, а многие другие морские организмы питаются детритом морского дна. На каждый вид сухопутных червей, приходится сотни видов морских червей, питающихся донными отложениями.

Морские организмы, обитающие в разных условиях окружающей среды, по разному питающиеся и с различными повадками, могут вести самый разный образ жизни. Особи некоторых видов обитают лишь на одном месте и ведут себя одинаково на протяжении всей жизни. Это характерно для большинства видов фитопланктона. Многие виды морских животных систематически изменяют образ жизни на протяжении своего жизненного цикла. Они проходят личиночную стадию, а превратившись во взрослых особей переходят к нектонному образу жизни или ведут образ жизни, свойственный для бентосных организмов. Другие виды ведут неподвижный образ жизни или могут не проходить личиночную стадию вообще. Кроме того, взрослые особи многих видов время от времени ведут разный образ жизни. Например, омары могут то ползать по морскому дну, то плавать над ним на небольшие расстояния. Многие крабы покидают свои безопасные норы на время непродолжительных экскурсий в поисках пищи, во время которых они ползают или плавают. Взрослые особи большинства видов рыб принадлежат к чисто нектонным организмам, но и среди них есть многие виды, которые обитают вблизи дна. Например, такие рыбы, как треска или камбала, большую часть времени плавают у дна или лежат на нем. Этих рыб называют придонными, хотя питаются они только на поверхности донных отложений.

При всем разнообразии морских организмов всех их характеризуют рост и воспроизводство как неотъемлемые свойства живых существ. В ходе их все части живого организма обновляются, видоизменяются или развиваются. Для поддержания этой деятельности химические соединения должны синтезироваться, то есть воссоздаваться из более мелких и простых компонентов. Таким образом, биохимический синтез - самый существенный признак жизни.

Биохимическии синтез осуществляется посредством ряда различных процессов. Поскольку при этом производится работа, для каждого процесса необходим источник энергии. Это прежде всего прoцесc фотосинтеза, в ходе которого за счет энергии солнечного света создаются почти все органические соединения, присутствующие в живых существах.

Процесс фотосинтеза можно описать следующим упрощенным уравнением:

СО 2 + Н 2 О + Кинтетическая энергия солнечного света = Сахар + Кислород, или Углекислый газ + Вода + Солнечный свет = Сахар + Кислород

Для понимания основ существования жизни в море необходимо знать следующие четыре особенности фотосинтеза:

    к фотосинтезу способны только некоторые морские организмы; в их число входят растения (водоросли, травы, диатомеи, кокколитофориды) и некоторые жгутиковые;

    сырь­ем для фотосинтеза служат простые неорганические соединения (вода и углекислый газ);

    при фотосинтезе образуется кислород;

    энергия в химической форме запасается в молекуле сахара.

Потенциальная энергия, запасенная в молекулах сахара, используется и растениями, и животными для выполнения важнейших жизненных функций.

Таким образом, солнечная энергия, первоначально усвоенная зеленым растением и запасенная в молекулах сахара, может в последующем быть использована самим растением или каким-нибудь животным, которое потребит эту молекулу сахара в составе пищи. Следовательно, вся жизнь на планете, включая жизнь в океане, зависит от потока солнечной энергии, которая удерживается биосферой благодаря фотосинтетической деятельности зеленых растений и в химической форме переносится в составе пищи от одного организма к другому.

Главными строительными блоками живой материи служат атомы углерода, водорода и кислорода. В небольших количествах необходимы железо, медь, кобальт и многие другие элементы. Неживые, образующие части морских организмов, состоят из соединений кремния, кальция, стронция и фосфора. Таким образом, поддержание жизни в океане связано с непрерывным потреблением вещества. Растения получают необходимые вещества прямо из морской воды, а животные организмы, кроме того,­ получают часть веществ в составе пищи.

В зависимости от используемых источников энергии морские организмы подразделяются на два главных типа: автотрофные (автотрофы) и гетеротрофные организмы (гетеротрофы).

Автотрофы, или «самосоздающиеся» организмы создают органические соединения из неорганических компонентов морской воды и осуществляют фотосинтез, используя энергию солнечного света. Однако известны автотрофные организмы и с другими способами питания. Например, микроорганизмы, синтезирую­щие сероводород (H 2 S) и углекислый газ (СО 2), черпают энергию не из потока солнечной радиации, а из некоторых соединений, например, сероводорода. Вместо серово­дорода с этой же целью может использоваться азот (N 2) и суль­фат (SO 4). Такой вид автотрофов называют хемо m рофам u .

Гетеротрофы («поедающие других») зависят от организмов, используемых ими в качестве пищи. Чтобы жить, они должны потреблять в пищу либо живые, либо отмершие ткани других организмов. Органическое вещество их пищи обеспечивает поступление всей химической энергии, необходимой для проведения самостоятельного биохимического синтеза, и нужных для жизни веществ.

Каждый морской организм взаимодействует с другими организмами и с самой водой, ее физическими и химическими характеристиками. Эта система взаимодействий образует морскую экосистему . Важнейшей особенностью морской экосистемы является перенос энергии и вещества; по сути, она своеобразная «машина» для производства органического вещества.

Солнечная энергия поглощается растениями и передается от них животным и бактериям в виде потенциальной энергии по основной пищевой цепи . Эти группы потребителей обмениваются с растениями углекислым газом, минеральными питательными веществами и кислородом. Таким образом, поток органических веществ замкнут и консервативен, между живыми компонентами системы в прямом и обратном направлении циркулируют одни и те же вещества, непосредственно входящие в эту систему или пополняемые через океан. В конечном счете вся приходящая энергия рассеивается в виде тепла в результате механических и химических процессов, протекающих в биосфере.

В таблице 9 приведено описание компонентов экосистемы; в ней перечисляются самые основные питательные вещества, используемые растениями, а биологическая составляющая экосистемы включает как живое, так и отмершее вещество. Последнее постепенно распадается на биогенные частицы вследствие бактериального разложения.

Биогенные остатки составляют примерно половину всего вещества морской части биосферы. Взвешенные в воде, захороненные в донных отложениях и налипающие на все выступающие поверхности, они заключают в себе огромный запас пищи. Некоторые пелагические животные питаются исключительно отмершим органическим веществом, а для многих других обитателей он составляет иногда значительную часть рациона в дополнение к живому планктону. Но все же основными потребителями органического детрита являются бентосные организмы.

Число организмов, живущих в море, меняется в пространстве и времени. В синих тропических водах открытых частей океанов содержится значительно меньше планктона и нектона, чем в зеленоватых водах побережий. Общая масса всех живых морских особей (микроорганизмов, растений и животных), отнесенная к единице поверхности или объема их местообитания составляет биомассу. Она обычно выражают в массе сырого или сухого вещества (г/м 2 , кг/га, г/м 3). Биомасса растений называется фитомассой, биомасса животных – зоомассой.

Основная роль в процессах новообразования органического вещества в водоемах принадлежит хлорофилсодержащим организмам – в основном фитопланктону. Первичная продукция - результат жизнедеятельности фитопланктона - характеризует итог процесса фотосинтеза, в ходе которого органическое вещество синтезируется из минеральных компонентов окружающей среды. Растения, создающие ее, называются n ервичными продуцентами . В открытом море ими создается практически все органическое вещество.

Таблица 9

Компоненты морской экосистемы

Таким образом, первичная продукция представляет собой массу новообразованного органического вещества за определенный период времени. Мерой первичной продукции является скорость новообразования органического вещества.

Различают валовую и чистую первичную продукцию. Под валовой первичной продукцией понимается все количество образовавшегося в ходе фотосинтеза органического вещества. Именно валовая первичная продукция применительно к фитопланктону является мерой фотосинтеза, поскольку дает представление о том количестве вещества и энергии, которые используются в дальнейших превращениях вещества и энергии в море. Под чистой первичной продукцией понимается та часть новообразованного органического вещества, которая остается после трат на обмен и которая остается непосредственно доступной для использования другими организмами в воде в качестве пищи.

Взаимоотношения между различными организмами, связанные с потреблением пищи, называются трофическими . Они являются важными понятиями в биологии океана.

Первый трофический уровень представлен фитопланктоном. Второй трофический уровень образует растительноядный зоопланктон. Суммарная биомасса, образующаяся за единицу времени на этом уровне, составляет вторичную продукцию экосистемы. Третий трофический уровень представляют плотоядные организмы, или хищники первого ранга, и всеядные. Суммарная продукция на этом уровне называется третичной. Четвертый трофический уровень образуют хищники второго ранга, которые питаются организмами более низких трофических уровней. Наконец, на пятом трофическом уровне находятся хищники третьего ранга.

Представление о трофических уровнях позволяет судить о эффективности экосистемы. Энергия или от Солнца, или в составе пищи поступает на каждый трофический уровень. Значительная доля энергии, поступившей на тот или другой уровень, рассеивается на нем и не может быть передана на более высокие уровни. Эти потери включают всю физическую и химическую работу, выполняемую живыми организмами для самоподдержания. Кроме того, животные высших трофических уровней потребляют лишь некоторую долю продукции, образуемой на низших уров­нях; часть растений и животных отмирает по естественным причинам. В результате количество энергии, которое извлекается с какого-либо трофического уровня организмами, находящимися на более высоком уровне пищевой сети, оказывается меньше количества энергии, поступившего на низший уровень. Отношение соответствующих количеств энергии называют экологической эффективностью трофического уровня и составляет обычно 0.1-0.2. Значения экологической эф­фективности трофического уровня используются для расчета биологической продукции.

Рис. 41 показывает в упрощенной форме пространственную организацию потоков энергии и вещества в реальном океане. В открытом океане эвфотическая зона, где протекает фотосинтез, и глубинные районы, где фотосинтез отсутствует, разделены значительным расстоянием. Это означает, что перенос химической энергии в глубинные слои воды приводит к постоянному и существенному оттоку биогенов (питательных веществ) из поверхностных вод.

Рис. 41. Основные направления обмена энергией и веществом в океане

Таким образом, процессы обмена энергией и веществом в океане образуют в совокупности экологический насос, откачивающий из поверхностных слоев основные питательные вещества. Если бы не действовали противоположные процессы, восполняющие эту потерю вещества, то поверхностные воды океана лишились бы всех биогенов и жизнь иссякла бы. Эта катастрофа не наступает лишь благодаря, в первую очередь, апвеллингу, выносящему глубинные воды к поверхности со средней скоростью примерно 300 м/год. Подъем глубинных вод, насыщенных биогенными элементами, особенно интенсивен у западных побережий материков, вблизи экватора и в высоких широтах, где сезонный термоклин разрушается и значительная толща воды охватывается конвективным перемешиванием.

Поскольку суммарная продукция морской экосистемы определяется величиной продукции на первом трофическом уровне, важно знать, какие факторы на нее влияют. К этим факторам относятся:

    освещенность поверхностного слоя океанических вод;

    температура воды;

    поступление питательных веществ к поверхности;

    скорость потребления (выедания) растительных организмов.

Освещенность поверхностного слоя воды определяет интенсивность процесса фотосинтеза, поэтому количество световой энергии, поступающей на ту или иную акваторию океана, лимитирует величину органической продукции. В свою очередь интенсивность солнечной радиации определяется географическими и метеорологическими факторами, особенно высотой Солнца над горизонтом и облачностью. В воде интенсивность света быстро уменьшается с глубиной. В результате этого зона первичного продуцирования ограничивается верхними несколькими десятками метров. В прибрежных водах, где обычно содержится значительно больше взвешенных веществ, чем в водах открытого океана, проникновение света еще более затрудняется.

Температура воды также влияет на величину первичной продукции. При одинаковой интенсивности света максимальная скорость фотосинтеза достигается каждым видом водорослей лишь в определенном интервале температуры. Повышение или понижение температуры относительно этого оптимального интервала приводит к уменьшению продукции фотосинтеза. Однако на большей части океана для многих видов фитопланктона температура воды оказывается ниже этого оптимума. Поэтому сезонный прогрев воды вызывает повышение скорости фотосинтеза. Максимальная скорость фотосинтеза у различных видов водорослей отмечается примерно при 20°С.

Для существования морских растений необходимы питательные вещества - макро- и микробиогенные элементы. Макробиогены - азот, фосфор, кремний, магний, кальций и калий необходимы в сравнительно больших количествах. Микробиогены, то есть элементы, необходимые в минимальных количествах, вклю­чают железо, марганец, медь, цинк, бор, натрий, молибден, хлор и ванадий.

Азот, фосфор и кремний содержатся в воде в таких малых количествах, что не удовлетворяют потребность в них растений и ограничивают интенсивность фотосинтеза.

Азот и фосфор нужны для постройки вещества клеток и, кроме того, фосфор принимает участие в энергетических процессах. Азота необходимо больше, чем фосфора, поскольку в растениях отношение «азот: фосфор» составляет примерно 16: 1. Обычно таким и является отношение концентраций этих элементов в морской воде. Однако в прибрежных водах процессы регенерации азота (то есть процессы, в результате которых азот возвращается в воду в форме, пригодной для потребления растениями) протекают медленнее, чем процессы регенерации фосфора. Поэтому во многих прибрежных районах содержание азота уменьшается относительно содержания фосфора, и он выступает как элемент, лимитирующий интенсивность фотосинтеза.

Кремний в больших количествах потребляют две группы фитопланктонных организмов - диатомеи и динофлагелляты (жгутиковые), которые строят из него свои скелеты. Иногда они извлекают кремний из поверхностных вод столь быстро, что воз­никающая в результате этого нехватка кремния начинает ограничивать их развитие. В результате вслед за сезонной вспышкой фитопланктона, потребляющего кремний, начинается бурное развитие «некремнистых» форм фитопланктона.

Потребление (выедание) фитопланктона зоопланктоном немедленно сказывается на величине первичной продукции, потому что каждое съеденное растение уже не будет расти и воспроизводиться. Следовательно, интенсивность выедания представляет собой один из факторов, влияющих на темпы создания первичной продукции. В равновесной ситуации интенсивность выедания должна быть такой, чтобы биомасса фитопланктона оставалась на постоянном уровне. При возрастании первичной продукции увеличение популяции зоопланктона или интенсивности выедания теоретически может вернуть эту систему в равновесие. Однако, чтобы зоопланктон размножился необходимо время. Поэтому даже при постоянстве прочих факторов устойчивое состояние никогда не достигается, и численность зоо- и фитопланктонных организмов колеблется относительно некоторого уровня равновесия.

Биологическая продуктивность морских вод заметно меняется в пространстве. К районам высокой продуктивности относятся континентальные шельфы и акватории открытого океана, где в результате апвеллинга происходит обогащение поверхностных вод биогенными веществами. Высокая продуктивность вод шельфа определяется также тем, что относительно мелкие шельфовые воды оказываются более теплыми и лучше освещенными. Сюда в первую очередь поступают богатые питательными веществами речные воды. Кроме того, запас биогенных элементов восполняется разложением органического вещества на морском дне.. В открытом океане площадь районов с высокой продуктивностью незначительна, потому что здесь прослеживаются планетарного масштаба субтропические антициклонические круговороты, для которых характерны процессы опускания поверхностных вод.

Акватории открытого океана с наибольшей продуктивностью приурочены к высоким широтам; их северная и южная граница обычно совпадает с 50 0 широты в обоих полушариях. Осенне-зимнее охлаждение приводит здесь к мощным конвективным движениям и выносу к поверхности биогенных элементов из глубинных слоев. Однако по мере дальнейшего продвижения в высокие широты продуктивность начнет убывать из-за возрастающего преобладания низких температур, ухудшающейся освещенности вследствие низкой высоты Солнца над горизонтом и ледового покрова.

Высоко продуктивны районы интенсивного прибрежного апвеллинга в зоне пограничных течений в восточных частях океанов у берегов Перу, Орегона, Сенегала и юго-западной Африки.

Во всех районах океана отмечается сезонный ход в величине первичной продукции. Это связано с биологическими реакциями фитопланктонных организмов на сезонные изменения физических условий среды обитания, особенно освещенности, силы ветра и температуры воды. Наибольшие сезонные контрасты характерны для морей умеренной зоны. Вследствие тепловой инерции океана изменения температуры поверхностных вод запаздывают относительно изменений температуры воздуха, и поэтому в северном полушарии максимальная температура воды отмечается в августе, а минимальная в феврале. К концу зимы в результате низких температур воды и уменьшения прихода солнечной радиации, проникающей в воду, численность диатомей и динофлагеллят сильно снижается. Между тем благодаря значительному охлаждению и зимним штормам поверхностные воды перемешиваются на большую глубину конвекцией. Подъем глубинных, богатых питательными веществами вод приводит к увеличению их содержания в поверхностном слое. С прогревом вод и увеличением освещенности создаются оптимальные условия для развития диатомей и отмечается вспышка численности организмов фитопланктона.

В начале лета, несмотря на оптимальные температурные условия и освещенность, ряд факторов приводит к уменьшению численности диатомей. Во-первых, их биомасса снижается из-за выедания зоопланктоном. Во-вторых, из-за прогрева поверхностных вод создается сильная стратификация, подавляющая вертикальное перемешивание и, следовательно, вынос к поверхности обогащенных биогенами глубинных вод. Оптимальные условия в это время создаются для развития динофлагеллят и других форм фитопланктона, не нуждающихся в кремнии для постройки скелета. Осенью, когда освещенность еще достаточна для фотосинтеза, вследствие охлаждения поверхностных вод термоклин разрушается, создаются условия для конвективного перемешивания. Поверхностные воды начинают пополняться питательными веществами из глубинных слоев воды, и их продуктивность возрастает, особенно в связи с развитием диатомей. При дальнейшем снижении температуры и освещенности численность фитопланктонных организмов всех видов убывает до низкого зимнего уровня. Многие виды организмов при этом впадают в анабиоз, выполняя роль «посевного материала» для будущей весенней вспышки.

В низких широтах изменения величины продуктивности сравнительно невелико и отражают главным образом изменения в вертикальной циркуляции. Поверхностные воды всегда сильно прогреты, и их постоянной особенностью является резко выраженный термоклин. В результате вынос глубинных, богатых био­генами вод из-под термоклина в поверхностный слой невозможен. Поэтому, несмотря на благоприятные прочие условия, вдали от районов апвеллинга в тропических морях отмечается низкая продуктивность.

Принцип кислородного и радиоуглеродного метода определения первичной продукции (скорости фотосинтеза). Задачи на определение, деструкции, валовой и чистой первичной продукции.

Какие обязательные условия должны быть на планете Земля для образования озонового слоя. Какие диапазоны УФ задерживает озоновый экран.

Какие формы экологических взаимоотношений отрицательно сказываются на видах.

Аменсализм- одна популяция отрицательно влияет на другую, но сама не испытывает ни отрицательного, ни положительного влияния. Типичный пример - высокие кроны деревьев, угнетающие рост низкорослых растений и мхов, за счет частичного перекрывания доступа солнечного света.

Аллелопатия - форма антибиоза, при которой организмы оказывают взаимно вредное влияние друг на друга, обусловленное их жизненными факторами (например, выделениями веществ). Встречается в основном у растений, мхов, грибов. При этом вредное влияние одного организма на другой не является необходимым для его жизнедеятельности и не приносит ему пользы.

Конкуренция - форма антибиоза, при которой два вида организмов являются биологическими врагами по своей сути (как правило, из-за общей кормовой базы или ограниченных возможностей для размножения). Например, между хищниками одного вида и одной популяции или разных видов, питающихся одной пищей и обитающих на одной территории. В этом случае вред, причиняемый одному организму приносит пользу другому, и наоборот.

Озон образуется, когда солнечное ультрафиолетовое излучение бомбардирует молекулы кислорода (О2 -> О3).

Образование озона из обычного двухатомного кислорода требует довольно большой энергии – почти 150 кДж на каждый моль.

Известно, что основная часть природного озона сосредоточена в стратосфере на высоте от 15 до 50 км над поверхностью Земли.

Фотолиз молекулярного кислорода происходит в стратосфере под воздействием ультрафиолетового излучения с длиной волны 175-200 нм и до 242 нм.



Реакции образования озона:

О2 + hν → 2О.

О2 + O → О3.

Радиоуглеродная модификация сводится к следующему. В пробу воды вносят изотоп углерода 14С в виде карбоната или гидрокарбоната натрия с известной радиоактивностью. После некоторой экспозиции склянок воду из них отфильтровывают через мембранный фильтр и определяют на фильтре радиоактивность клеток планктона.

Кислородный метод определения первичной продукции водоемов (скляночный метод) - основан на определении интенсивности фотосинтеза планктонных водорослей в склянках, установленных в водоеме на разной глубине, а также в естественных условиях - по разности содержания растворенного в воде кислорода в конце дня и в конце ночи.

Задачи на определение, деструкции, валовой и чистой первичной продукции.??????

Эвфотическая зона- верхний слой океана, освещенность которого достаточна для протекания процесса фотосинтеза. Нижняя граница фотической зоны проходит на глубине, которую достигает 1 % света с поверхности. Именно в фотической зоне обитает фитопланктон,а также радиолярии произрастают растения и обитает большинство водных животных. Чем ближе к полюсам Земли, тем меньше фотическая зона. Так, на экваторе, где солнечные лучи падают практически вертикально, глубина зоны составляет до 250 м, тогда как в Белом не превышает 25 м.

Величина КПД фотосинтеза зависит от многих внутренних и внешних условий. Для отдельных листьев, помещенных в специальные условия, величина КПД фотосинтеза может достигать 20%. Однако первичные синтетические процессы, протекающие в листе, вернее в хлоропластах, и конечный урожай разделяет вереница физиологических процессов, в которой теряется значительная часть накопленной энергии. Кроме того, эффективность усвоения световой энергии постоянно ограничивается уже упомянутыми факторами окружающей среды. В силу этих ограничений даже у самых совершенных сортов сельскохозяйственных растений в оптимальных условиях роста величина КПД фотосинтеза не превышает 6-7%.

Урок 2. Биомасса биосферы

Анализ зачетной работы и выставление оценок (5-7 мин).

Устное повторение и компьютерное тестирование (13 мин).

Биомасса суши

Биомасса биосферы составляет примерно 0,01% от массы косного вещества биосферы, причем около 99% процентов биомассы приходится на долю растений, на долю консументов и редуцентов - около 1%. На континентах преобладают растения (99,2%), в океане - животные (93,7%)

Биомасса суши гораздо больше биомассы мирового океана, она составляет почти 99,9%. Это объясняется большей продолжительностью жизни и массой продуцентов на поверхности Земли. У наземных растений использование солнечной энергии для фотосинтеза достигает 0,1%, а в океане - только 0,04%.

Биомасса различных участков поверхности Земли зависит от климатических условий - температуры, количества выпадаемых осадков. Суровые климатические условия тундры - низкие температуры, вечная мерзлота, короткое холодное лето сформировали своеобразные растительные сообщества с небольшой биомассой. Растительность тундры представлена лишайниками, мхами, стелющимися карликовыми формами деревьев, травянистой растительностью, выдерживающей такие экстремальные условия. Биомасса тайги, затем смешанных и широколиственных лесов постепенно увеличивается. Зона степей сменяется субтропической и тропической растительностью, где условия для жизни наиболее благоприятны, биомасса максимальна.

В верхнем слое почвы наиболее благоприятный водный, температурный, газовый режим для жизнедеятельности. Растительный покров обеспечивает органическим веществом всех обитателей почвы - животных (позвоночных и беспозвоночных), грибы и огромное количество бактерий. Бактерии и грибы - редуценты, они играют значительную роль в круговороте веществ биосферы, минерализуя органические вещества. "Великие могильщики природы" - так назвал бактерии Л.Пастер.

Биомасса мирового океана

Гидросфера "водная оболочка" образована Мировым океаном, который занимает около 71% поверхности земного шара, и водоемами суши - реками, озерами - около 5%. Много воды находится в подземных водах и ледниках. В связи с высокой плотностью воды, живые организмы могут нормально существовать не только на дне, но и в толще воды, и на ее поверхности. Поэтому гидросфера заселена по всей толщине, живые организмы представлены бентосом , планктоном и нектоном .

Бентосные организмы (от греч. benthos - глубина) ведут придонный образ жизни, живут на грунте и в грунте. Фитобентос образован различными растениями - зелеными, бурыми, красными водорослями, которые произрастают на различных глубинах: на небольшой глубине зеленые, затем бурые, глубже - красные водоросли которые встречаются на глубине до 200 м. Зообентос представлен животными - моллюсками, червями, членистоногими и др. Многие приспособились к жизни даже на глубине более 11 км.

Планктонные организмы (от греч. planktos - блуждающий) - обитатели толщи воды, они не способны самостоятельно передвигаться на большие расстояния, представлены фитопланктоном и зоопланктоном. К фитопланктону относятся одноклеточные водоросли, цианобактерии, которые находятся в морских водоемах до глубины 100 м и являются основным продуцентом органических веществ - у них необычайно высокая скорость размножения. Зоопланктон - это морские простейшие, кишечнополостные, мелкие ракообразные. Для этих организмов характерны вертикальные суточные миграции, они являются основной пищевой базой для крупных животных - рыб, усатых китов.

Нектонные организмы (от греч. nektos - плавающий) - обитатели водной среды, способные активно передвигаться в толще воды, преодолевая большие расстояния. Это рыбы, кальмары, китообразные, ластоногие и другие животные.

Письменная работа с карточками:

1. Сравните биомассу продуцентов и консументов на суше и в океане.

2. Как распределена биомасса в Мировом океане?

3. Охарактеризуйте биомассу суши.

4. Дайте определение терминам или раскройте понятия: нектон; фитопланктон; зоопланктон; фитобентос; зообентос; процент биомассы Земли от массы косного вещества биосферы; процент биомассы растений от общей биомассы наземных организмов; процент биомассы растений от общей биомассы водных организмов.

Карточка у доски:

1. Какой процент биомассы Земли от массы косного вещества биосферы?

2. Какой процент от биомассы Земли приходится на долю растений?

3. Какой процент от общей биомассы наземных организмов составляет биомасса растений?

4. Какой процент от общей биомассы водных организмов составляет биомасса растений?

5. Какой % солнечной энергии используется для фотосинтеза на суше?

6. Какой % солнечной энергии используется для фотосинтеза в океане?

7. Как называются организмы, населяющие толщу воды и переносимые морскими течениями?

8. Как называются организмы, населяющие грунт океана?

9. Как называются организмы, активно передвигающимися в толще воды?

Тестовое задание:

Тест 1 . Биомасса биосферы от массы косного вещества биосферы составляет:

Тест 2 . На долю растений от биомассы Земли приходится:

Тест 3 . Биомасса растений на суше по сравнению с биомассой наземных гетеротрофов:

2. Составляет 60%.

3. Составляет 50%.

Тест 4 . Биомасса растений в океане по сравнению с биомассой водных гетеротрофов:

1. Преобладает и составляет 99,2%.

2. Составляет 60%.

3. Составляет 50%.

4. Меньше биомассы гетеротрофов и составляет 6,3%.

Тест 5 . Использование солнечной энергии для фотосинтеза на суше в среднем составляет:

Тест 6 . Использование солнечной энергии для фотосинтеза в океане в среднем составляет:

Тест 7 . Бентос океана представлен:

Тест 8 . Нектон океана представлен:

1. Активно передвигающимися в толще воды животными.

2. Организмами, населяющими толщу воды и переносимыми морскими течениями.

3. Организмами, живущими на грунте и в грунте.

4. Организмами, живущими на поверхностной пленке воды.

Тест 9 . Планктон океана представлен:

1. Активно передвигающимися в толще воды животными.

2. Организмами, населяющими толщу воды и переносимыми морскими течениями.

3. Организмами, живущими на грунте и в грунте.

4. Организмами, живущими на поверхностной пленке воды.

Тест 10 . От поверхности вглубь водоросли произрастают в следующем порядке:

1. Неглубоко бурые, глубже зеленые, глубже красные до - 200 м.

2. Неглубоко красные, глубже бурые, глубже зеленые до - 200 м.

3. Неглубоко зеленые, глубже красные, глубже бурые до - 200 м.

4. Неглубоко зеленые, глубже бурые, глубже красные - до 200 м.

Температура Мирового океана существенно влияет на его биологическое разнообразие. Это означает, что деятельность человека может изменить глобальное распределение жизни в воде, что, по всей видимости, уже происходит с фитопланктоном, численность которого в среднем снижается на 1% в год.

Океанский фитопланктон - одноклеточные микроводоросли - представляют собой основу практически всех пищевых цепей и экосистем в океане. Половина всего фотосинтеза на Земле приходится на долю фитопланктона. Его состояние влияет на количество углекислого газа, которое может абсорбировать океан, на количество рыбы, и, в конечном счете, на благополучие миллионов людей.

Термин «биологическое разнообразие» означает вариабельность живых организмов из всех источников, включая среди прочего наземные, морские и иные водные экосистемы и экологические комплексы, частью которых они являются; это понятие включает в себя разнообразие в рамках вида, между видами и разнообразие экосистем.

Так гласит определение этого термина в Конвенции о биологическом разнообразии. Целями этого документа являются сохранение биологического разнообразия, устойчивое использование его компонентов и совместное получение на справедливой и равной основе выгод, связанных с использованием генетических ресурсов.

Ранее было проведено много исследований биологического разнообразия на суше. Знания же человека о распределении морской фауны существенно ограничены.

Но исследование под названием «Перепись морской жизни» (Census of Marine Life, о котором неоднократно писала «Газета.Ru»), продолжавшееся десятилетие, изменило ситуацию. Человек стал знать об океане больше. Его авторы свели воедино знания о глобальных тенденциях биологического разнообразия по основным группам морских жителей, в том числе кораллов, рыб, китов, тюленей, акул, мангровых лесов, морских водорослей и зоопланктона.

«Хотя мы все больше осознаем глобальные градиенты разнообразия и связанные с ними экологические факторы, наши знания о работе этих моделей в океане существенно отстают от того, что мы знаем про сушу, и настоящее исследование проводилось с целью ликвидировать это несоответствие» , – объяснил Вальтер Джетц из Йельского университета цель работы.

На основе полученных данных ученые сопоставили и проанализировали глобальные структуры биологического разнообразия более 11 тысяч морских видов растений и животных, начиная от крошечного планктона до акул и китов.

Исследователями было обнаружено поразительное сходство между закономерностями распределения животных видов и температурой воды в океане.

Эти результаты означают, что будущие изменения температуры океана могут значительно повлиять на распределение морской фауны.

Кроме того, ученые обнаружили, что положение «горячих точек» разнообразия морской жизни (областей, где в настоящий момент наблюдается большое количество редких видов, которым грозит вымирание: такими «точками», например, являются коралловые рифы) в основном приходится на районы, где зафиксирован высокий уровень воздействия человека. Примерами такого воздействия являются рыболовство, адаптация окружающей среды для своих нужд, антропогенное изменение климата и загрязнение окружающей среды. Вероятно, человечеству стоит задуматься о том, насколько эта деятельность укладывается в рамки Конвенции о биологическом разнообразии.

«Совокупный эффект деятельности человека ставит под угрозу разнообразие жизни в Мировом океане» , – утверждает Камило Мора из Университета Делхаузи, один из авторов работы.

По соседству с этой работой в Nature опубликована другая статья, посвященная проблемам морского биологического разнообразия на Земле. В ней канадские ученые рассказывают о современных колоссальных темпах снижения биомассы фитопланктона в последние годы. Используя архивные данные в совокупности с последними спутниковыми наблюдениями исследователи установили, что в результате потепления океана количество фитопланктона снижается в год на 1%.

У фитопланктона соотношение размера и численности то же, что и у млекопитающих

Фитопланктон – это часть планктона, которая проводит фотосинтез, прежде всего протококковые водоросли, диатомовые водоросли и цианобактерии. Фитопланктон имеет жизненно важное значение, поскольку на его долю приходится примерно половина продукции всего органического вещества на Земле и большая часть кислорода в нашей атмосфере. Помимо существенного сокращения кислорода в атмосфере Земли, что пока все-таки является делом долгосрочным, снижение численности фитопланктона грозит изменениями морских экосистем, что обязательно скажется на рыболовстве.

При изучении проб морского фитопланктона выяснилось, что чем больше размер клеток того или иного вида водорослей, тем ниже их численность. Удивительно, но это снижение численности происходит пропорционально массе клетки в степени –0,75 - точно такое же количественное соотношение этих величин ранее было описано для наземных млекопитающих. А значит, «правило энергетической эквивалентности» действует и для фитопланктона.

Фитопланктон распределен по океану неравномерно. Его количество зависит от температуры воды, освещенности и количества питательных веществ. Прохладные годы умеренных и полярных областей больше подходят для развития фитопланктона, чем теплые тропические воды. В тропической зоне открытого океана фитопланктон активно развивается только там, где проходят холодные течения. В Атлантике фитопланктон активно развивается в районе о-вов Зеленого Мыса (недалеко от Африки), там холодное Канарское течение образует круговорот.

В тропиках количество фитопланктона одинаково в течение года, тогда как в высоких широтах наблюдается обильное размножение диатомей весной и осенью и сильный спад в зимнее время. Наибольшая масса фитопланктона сосредоточена в хорошо освещенных поверхностных водах (до 50 м). Глубже 100 м, куда не проникает солнечный свет, фитопланктона почти нет так как там невозможен фотосинтез.

Азот и фосфор - главные питательные вещества, необходимые для развития фитопланктона. Они скоплены ниже 100 м, в зоне, недоступной фитопланктону. Если вода хорошо перемешивается, азот и фосфор регулярно доставляются к поверхности, питая фитопланктон. Теплые воды легче холодных и не опускаются на глубину - перемешивания не происходит. Поэтому в тропиках азот и фосфор не доставляются к поверхности, и скудость питательных веществ не дает развиться фитопланктону.

В полярных областях поверхностные воды охлаждаются и опускаются на глубину. Глубинные течения несут холодные воды к экватору. Натыкаясь на подводные хребты, глубинные воды поднимаются к поверхности и несут с собой минеральные вещества. В таких областях фитопланктона значительно больше. В тропических зонах открытого океана, над глубоководными равнинами (Северо-Американской и Бразильской котловинами), где не происходит подъема воды, фитопланктона совсем мало. Эти области - океанические пустыни, их обходят даже крупные мигрирующие животные, такие как киты или парусники.

Морской фитопланктон Trichodesmium является важнейшим азотфиксатором в тропических и субтропических районах Мирового океана. Эти крошечные фотосинтетические организмы используют солнечный свет, углекислый газ и другие нутриенты для синтеза органического вещества, которое составляет основу морской пищевой пирамиды. Азот, поступающий в верхние освещенные слои океана из глубинных слоев водной толщи и из атмосферы, служит необходимой подпиткой планктона.

Чарльз

Почему океаны имеют «низкую продуктивность» с точки зрения фотосинтеза?

80% мирового фотосинтеза происходит в океане. Несмотря на это, океаны также имеют низкую продуктивность - они покрывают 75% земной поверхности, но из ежегодного 170 миллиардов тонн сухого веса, зафиксированного в результате фотосинтеза, они дают только 55 миллиардов тонн. Не противоречат ли эти два факта, с которыми я столкнулся по отдельности? Если океаны исправить 80% от общего C O X 2 " role="presentation" style="position: relative;">C O X C O X 2 " role="presentation" style="position: relative;"> C O X 2 " role="presentation" style="position: relative;">2 C O X 2 " role="presentation" style="position: relative;"> C O X 2 " role="presentation" style="position: relative;">С C O X 2 " role="presentation" style="position: relative;">О C O X 2 " role="presentation" style="position: relative;">Икс C O X 2 " role="presentation" style="position: relative;">2 фиксируется фотосинтезом на земле и высвобождает 80% от общего количества O X 2 " role="presentation" style="position: relative;">O X O X 2 " role="presentation" style="position: relative;"> O X 2 " role="presentation" style="position: relative;">2 O X 2 " role="presentation" style="position: relative;"> O X 2 " role="presentation" style="position: relative;">О O X 2 " role="presentation" style="position: relative;">Икс O X 2 " role="presentation" style="position: relative;">2 Высвобожденные в результате фотосинтеза на Земле, они должны были составлять также 80% сухого веса. Есть ли способ примирить эти факты? В любом случае, если 80% фотосинтеза происходит в океанах, это вряд ли кажется низкой продуктивностью - тогда почему океаны, как говорят, имеют низкую первичную продуктивность (для этого также приводится множество причин - что свет не доступен на всех глубинах в океанах, так далее.)? Большое количество фотосинтеза должно означать большую производительность!

C_Z_

Будет полезно, если вы укажете, где вы нашли эти две статистики (80% мировой продуктивности приходится на океан, а океаны производят 55/170 миллионов тонн сухого веса)

Ответы

chocoly

Во-первых, мы должны знать, каковы наиболее важные критерии для фотосинтеза; это: свет, СО 2 , вода, питательные вещества. docenti.unicam.it/tmp/2619.ppt Во-вторых, производительность, о которой вы говорите, должна называться «первичная производительность» и рассчитывается путем деления количества углерода, конвертированного на единицу площади (м 2), на время. ww2.unime.it/snchimambiente/PrPriFattMag.doc

Таким образом, благодаря тому факту, что океаны занимают большую площадь мира, морские микроорганизмы могут превращать большое количество неорганического углерода в органический (принцип фотосинтеза). Большая проблема в океанах - наличие питательных веществ; они имеют тенденцию откладываться или реагировать с водой или другими химическими соединениями, даже если морские фотосинтезирующие организмы в основном обнаруживаются на поверхности, где, конечно, присутствует свет. Это снижает как следствие потенциал фотосинтетической продуктивности океанов.

WYSIWYG ♦

MTGradwell

Если океаны фиксируют 80% общего CO2CO2, зафиксированного в результате фотосинтеза на земле, и выделяют 80% общего O2O2, выделяемого в результате фотосинтеза на земле, они должны были также составлять 80% от полученного сухого веса.

Во-первых, что подразумевается под «О 2 выпущен»? Означает ли это, что «O 2 высвобождается из океанов в атмосферу, где он способствует росту излишков»? Этого не может быть, поскольку количество O 2 в атмосфере довольно постоянное, и есть свидетельства того, что он значительно ниже, чем в юрские времена. В целом, глобальные поглотители O 2 должны уравновешивать источники O 2 или, если что-то должно немного превышать их, приводя к тому, что текущие уровни CO2 в атмосфере постепенно увеличиваются за счет уровней O 2 .

Таким образом, под «выпущенным» мы имеем в виду «выпущенный в процессе фотосинтеза в момент его действия».

Океаны фиксируют 80% от общего количества CO 2 , связанного с помощью фотосинтеза, да, но они также расщепляют его с такой же скоростью. Для каждой клетки водорослей, которая является фотосинтезирующей, есть та, которая мертва или умирает и потребляется бактериями (которые потребляют O 2), или она сама потребляет кислород для поддержания своих метаболических процессов в ночное время. Таким образом, чистое количество O 2, выделяемого океанами, близко к нулю.

Теперь мы должны спросить, что мы подразумеваем под «производительностью» в этом контексте. Если молекула CO 2 фиксируется из-за активности водорослей, но затем почти сразу же снова становится незафиксированной, считается ли это «производительностью»? Но, моргни, и ты упустишь это! Даже если вы не моргаете, вряд ли это будет измеримо. Сухой вес водорослей в конце процесса такой же, как и в начале. поэтому, если мы определим «продуктивность» как «увеличение сухой массы водорослей», то производительность будет равна нулю.

Чтобы фотосинтез водорослей оказывал устойчивое воздействие на глобальные уровни CO 2 или O 2 , фиксированный CO 2 должен быть включен во что-то менее быстрое, чем водоросли. Что-то вроде трески или хека, которые в качестве бонуса можно собирать и ставить на столы. «Производительность» обычно относится к способности океанов пополнять запасы этих вещей после сбора урожая, и это действительно мало по сравнению со способностью земли производить повторные урожаи.

Это было бы другой историей, если бы мы рассматривали водоросли как потенциально пригодные для массового сбора урожая, так что их способность расти как лесной пожар при наличии стоков удобрений с земли была расценена как «продуктивность», а не как глубокое неудобство. Но это не так.

Другими словами, мы склонны определять «продуктивность» в терминах того, что полезно для нас как вида, а водоросли, как правило, бесполезны.

Включайся в дискуссию
Читайте также
15 монастыри и монахи в псковском крае
Строим храм чуда архангела михаила в хонех
Житие святой мученицы Иулии (Юлии) Святая мученица иулия