Подпишись и читай
самые интересные
статьи первым!

Формулы приведения 2. Формулы приведения

Урок и презентация на тему: "Применение формул приведения при решении задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса
1С: Школа. Интерактивные задания на построение для 7-10 классов
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов

Что будем изучать:
1. Немного повторим.
2. Правила для формул приведения.
3. Таблица преобразований для формул приведения.
4. Примеры.

Повторение тригонометрических функций

Ребята, с формулами привидения вы уже сталкивались, но так их еще не называли. Как думаете: где?

Посмотрите на наши рисунки. Правильно, когда вводили определения тригонометрических функций.

Правило для формул приведения

Давайте введем основное правило: Если под знаком тригонометрической функции содержится число вида π×n/2 + t, где n – любое целое число, то нашу тригонометрическую функцию можно привести к более простому виду, которая будет содержать только аргумент t. Такие формулы и называют формулами привидения.

Вспомним некоторые формулы:

  • sin(t + 2π*k) = sin(t)
  • cos(t + 2π*k) = cos(t)
  • sin(t + π) = -sin(t)
  • cos(t + π) = -cos(t)
  • sin(t + π/2) = cos(t)
  • cos(t + π/2) = -sin(t)
  • tg(t + π*k) = tg(x)
  • ctg(t + π*k) = ctg(x)

формул привидения очень много, давайте составим правило по которому будем определять наши тригонометрические функции при использовании формул привидения :

  • Если под знаком тригонометрической функции содержатся числа вида: π + t, π - t, 2π + t и 2π - t, то функция не изменится, то есть, например, синус останется синусом, котангенс останется котангенсом.
  • Если под знаком тригонометрической функции содержатся числа вида: π/2 + t, π/2 - t,
    3π/2 + t и 3π/2 - t, то функция изменится на родственную, т. е. синус станет косинусом, котангенс станет тангенсом.
  • Перед получившийся функцией, надо поставить тот знак, который имела бы преобразуемая функция при условии 0

Эти правила применимы и когда аргумент функции задан в градусах!

Так же мы можем составить таблицу преобразований тригонометрических функций:



Примеры применения формул приведения

1.Преобразуем cos(π + t). Наименование функции остается, т.е. получим cos(t). Далее предположим, что π/2

2. Преобразуем sin(π/2 + t). Наименование функции изменяется, т.е. получим cos(t). Далее предположим что 0 sin(t + π/2) = cos(t)



3. Преобразуем tg(π + t). Наименование функции остается, т.е. получим tg(t). Далее предположим, что 0

4. Преобразуем ctg(270 0 + t). Наименование функции изменяется, то есть получим tg(t). Далее предположим что 0

Задачи с формулами приведения для самостоятельного решения

Ребята, преобразуйте самостоятельно, используя наши правила:

1) tg(π + t),
2) tg(2π - t),
3) ctg(π - t),
4) tg(π/2 - t),
5) ctg(3π + t),
6) sin(2π + t),
7) sin(π/2 + 5t),
8) sin(π/2 - t),
9) sin(2π - t),
10) cos(2π - t),
11) cos(3π/2 + 8t),
12) cos(3π/2 - t),
13) cos(π - t).

Как запомнить формулы приведения тригонометрических функций? Это легко, если использовать ассоциацию.Данная ассоциация придумана не мной. Как уже говорилось, хорошая ассоциация должна «цеплять», то есть вызывать яркие эмоции. Не могу назвать эмоции, вызываемые этой ассоциацией, позитивными. Но она дает результат — позволяет запоминать формулы приведения, а значит, имеет право на существование. В конце концов, если она вам не понравится, вы же ее можете не использовать, правильно?

Формулы приведения имеют вид: sin(πn/2±α), cos(πn/2±α), tg(πn/2±α), ctg(πn/2±α). Запоминаем, что +α дает движение против часовой стрелки, — α — движение по часовой стрелке.

Для работы с формулами приведения нужны два пункта:

1) ставим знак, который имеет начальная функция (в учебниках пишут: приводимая. Но, чтобы не запутаться, лучше назвать ее начальной), если считать α углом I четверти, то есть маленьким.

2) Горизонтальный диаметр — π±α, 2π±α, 3π±α… — в общем, когда нет дроби — название функции не меняет. Вертикальный π/2±α, 3π/2±α, 5π/2±α…- когда дробь есть — название функции меняет: синус — на косинус, косинус — на синус, тангенс — на котангенс и котангенс — на тангенс.

Теперь, собственно, ассоциация:

вертикальный диаметр (есть дробь) —

пьяный стоит. Что с ним случится рано

или поздно? Правильно, упадет.

Название функции изменится.

Если же диаметр горизонтальный — пьяный уже лежит. Спит, наверное. С ним уже ничего не случится, он уже принял горизонтальное положение. Соответственно, название функции не меняется.

То есть sin(π/2±α), sin(3π/2±α), sin(5π/2±α) и т.д. дают ±cosα,

а sin(π±α), sin(2π±α), sin(3π±α), … — ±sinα.

Как , уже знаем.

Как это работает? Смотрим на примерах.

1) cos(π/2+α)=?

Становимся на π/2. Поскольку +α — значит, идем вперед, против часовой стрелки. Попадаем во II четверть, где косинус имеет знак «-«. Название функции меняется («пьяный стоит», значит — упадет). Итак,

cos(π/2+α)=-sin α.

Становимся на 2π. Так как -α — идем назад, то есть по часовой стрелке. Попадаем в IV четверть, где тангенс имеет знак «-«. Название функции не меняется (диаметр горизонтальный, «пьяный уже лежит»). Таким образом, tg(2π-α)=- tgα.

3) ctg²(3π/2-α)=?

Примеры, в которых функция возводится в четную степень, решаются еще проще. Четная степень «-» убирает, то есть надо только выяснить, меняется название функции или остается. Диаметр вертикальный (есть дробь, «пьяный стоит», упадет), название функции меняется. Получаем: ctg²(3π/2-α)= tg²α.

Данная статья посвящена подробному изучению тригонометрических формул приведения. Дан полный список формул приведения, показаны примеры их использования, приведено доказательство верности формул. Также в статье дано мнемоническое правило, которое позволяет выводить формулы приведения, не запоминая каждую формулу.

Yandex.RTB R-A-339285-1

Формулы приведения. Список

Фомулы приведения позволяют приводить основные тригонометрические функции углов произвольной величины к функциям углов, лежащих в интервале от 0 до 90 градусов (от 0 до π 2 радиан). Оперировать углами от 0 до 90 градусов гораздо удобнее, чем работать со сколь угодно большими значениями, поэтому формулы приведения широко применяются при решении задач тригонометрии.

Прежде, чем мы запишем сами формулы, уточним несколько важных для понимания моментов.

  • Аргументами тригонометрических функций в формулах приведения являются угды вида ± α + 2 π · z , π 2 ± α + 2 π · z , 3 π 2 ± α + 2 π · z . Здесь z - любое целое число, а α - произвольный угол поворота.
  • Не обязательно учить все формулы приведения, количество которых довольно внушительно. Существует мнемоническое правило, которо позволяет легко вывести нужную формулу. Речь о мнемоническом правиле пойдет позже.

Теперь перейдем непосредственно к формулам приведения.

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов. запишем все формулы в виде таблицы.

Формулы приведения

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin - α + 2 π z = - sin α , cos - α + 2 π z = cos α t g - α + 2 π z = - t g α , c t g - α + 2 π z = - c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = - sin α t g π 2 + α + 2 π z = - c t g α , c t g π 2 + α + 2 π z = - t g α sin π 2 - α + 2 π z = cos α , cos π 2 - α + 2 π z = sin α t g π 2 - α + 2 π z = c t g α , c t g π 2 - α + 2 π z = t g α sin π + α + 2 π z = - sin α , cos π + α + 2 π z = - cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π - α + 2 π z = sin α , cos π - α + 2 π z = - cos α t g π - α + 2 π z = - t g α , c t g π - α + 2 π z = - c t g α sin 3 π 2 + α + 2 π z = - cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = - c t g α , c t g 3 π 2 + α + 2 π z = - t g α sin 3 π 2 - α + 2 π z = - cos α , cos 3 π 2 - α + 2 π z = - sin α t g 3 π 2 - α + 2 π z = c t g α , c t g 3 π 2 - α + 2 π z = t g α

В данном случае формулы записаны с радианами. Однако можно записать их и с использованием градусов. Достаточно только перевести радианы в градусы, заменив π на 180 градусов.

Примеры использования формул приведения

Покажем, как пользоваться формулами приведения и как указанные формулы применяются при решении практических примеров.

Угол под знаком тригонометрической функции можно представить не одним, а множеством способов. Например, аргумент тригонометрической функции может быть представлен в видах ± α + 2 π z , π 2 ± α + 2 π z , π ± α + 2 π z , 3 π 2 ± α + 2 π z . Продемонстрируем это.

Возьмем угол α = 16 π 3 . Это угол можно записать так:

α = 16 π 3 = π + π 3 + 2 π · 2 α = 16 π 3 = - 2 π 3 + 2 π · 3 α = 16 π 3 = 3 π 2 - π 6 + 2 π

В зависимости от представления угла используется соответствующая формула приведения.

Возьмем тот же угол α = 16 π 3 и вычислим его тангенс

Пример 1. Использование формул приведения

α = 16 π 3 , t g α = ?

Представим угол α = 16 π 3 в виде α = π + π 3 + 2 π · 2

Этому представлению угла будет соответствовать формула приведения

t g (π + α + 2 π z) = t g α

t g 16 π 3 = t g π + π 3 + 2 π · 2 = t g π 3

Воспользовавшись таблицей, укажем значение тангенса

Теперь используем другое представление угла α = 16 π 3 .

Пример 2. Использование формул приведения

α = 16 π 3 , t g α = ? α = - 2 π 3 + 2 π · 3 t g 16 π 3 = t g - 2 π 3 + 2 π · 3 = - t g 2 π 3 = - (- 3) = 3

Наконец, для третьего представления угла запишем

Пример 3. Использование формул приведения

α = 16 π 3 = 3 π 2 - π 6 + 2 π t g 3 π 2 - α + 2 π z = c t g α t g α = t g (3 π 2 - π 6 + 2 π) = c t g π 6 = 3

Теперь приведем пример на использование формул приведения посложнее

Пример 4. Использование формул приведения

Представим sin 197 ° через синус и косинус острого угла.

Для того, чтобы можно было применять формулы приведения, нужно представить угол α = 197 ° в одном из видов

± α + 360 ° · z , 90 ° ± α + 360 ° · z , 180 ° ± α + 360 ° · z , 270 ° ± α + 360 ° · z . Согласно условию задачи, угол должен быть острым. Соответственно, у нас есть два способа для его представления:

197 ° = 180 ° + 17 ° 197 ° = 270 ° - 73 °

Получаем

sin 197 ° = sin (180 ° + 17 °) sin 197 ° = sin (270 ° - 73 °)

Теперь посмотрим на формулы приведения для синусов и выберем соответствующие

sin (π + α + 2 πz) = - sinα sin (3 π 2 - α + 2 πz) = - cosα sin 197 ° = sin (180 ° + 17 ° + 360 ° · z) = - sin 17 ° sin 197 ° = sin (270 ° - 73 ° + 360 ° · z) = - cos 73 °

Мнемоническое правило

Формул приведения много, и, к счастью, нет необходимости заучивать их наизусть. Существуют закономерности, по которым можно выводить формулы приведения для разных углов и тригонометрических функций. Эти закономерности называются мнемоническим правилом. Мнемоника - искусство запоминания. Мнемоническое правило состоит из трех частей, или содержит три этапа.

Мнемоническое правило

1. Аргумент исходной функции представляется в одном из видов

± α + 2 πz π 2 ± α + 2 πz π ± α + 2 πz 3 π 2 ± α + 2 πz

Угол α должен лежать в пределах от 0 до 90 градусов.

2. Определяется знак исходной тригонометрической функции. Такой же знак будет иметь функция, записываемая в правой части формулы.

3. Для углов ± α + 2 πz и π ± α + 2 πz название исходной функции остается неизменным, а для углов π 2 ± α + 2 πz и 3 π 2 ± α + 2 πz соответственно меняется на "кофункцию". Синус - на косинус. Тангенс - на котангенс.

Чтобы пользоваться мнемоническим праилом для формул приведения нужно уметь определять знаки тригонометрических функций по четвертям единичной окружности. Разберем примеры применения мнемонического правила.

Пример 1. Использование мнемонического правила

Запишем формулы приведения для cos π 2 - α + 2 πz и t g π - α + 2 πz . α - улог первой четверти.

1. Так как по условию α - улог первой четверти, мы пропускаем первый пункт правила.

2. Определим знаки функций cos π 2 - α + 2 πz и t g π - α + 2 πz . Угол π 2 - α + 2 πz также является углом первой четверти, а угол π - α + 2 πz находится во второй четверти. В первой четверти функция косинуса положительна, а тангенс во второй четверти имеет знак минус. Запишем, как будут выглядеть искомые формулы на этом этапе.

cos π 2 - α + 2 πz = + t g π - α + 2 πz = -

3. Согласно третьему пункту для угла π 2 - α + 2 π название функции изменяется на конфуцию, а для угла π - α + 2 πz остается прежним. Запишем:

cos π 2 - α + 2 πz = + sin α t g π - α + 2 πz = - t g α

А теперь заглянем в формулы, приведенные выше, и убедимся в том, что мнемоническое правило работает.

Рассмотрим пример с конкретным углом α = 777 ° . Приведем синус альфа к тригонометрической функции острого угла.

Пример 2. Использование мнемонического правила

1. Представим углол α = 777 ° в необходимом виде

777 ° = 57 ° + 360 ° · 2 777 ° = 90 ° - 33 ° + 360 ° · 2

2. Исходный угол - угол первой четверти. Значит, синус угла имеет положительный знак. В итоге имеем:

3. sin 777 ° = sin (57 ° + 360 ° · 2) = sin 57 ° sin 777 ° = sin (90 ° - 33 ° + 360 ° · 2) = cos 33 °

Теперь рассмотрим пример, который показывает, как важно правильно определить знак тригонометрической функции и правильно представить угол при использовании мнемонического правила. Повторим еще раз.

Важно!

Угол α должен быть острым!

Вычислим тангенс угла 5 π 3 . Из таблицы значений основных тригонометрических функций можно сразу взять значение t g 5 π 3 = - 3 , но мы применим мнемоническое правило.

Пример 3. Использование мнемонического правила

Представим угол α = 5 π 3 в необходимом виде и воспользуемся правилом

t g 5 π 3 = t g 3 π 2 + π 6 = - c t g π 6 = - 3 t g 5 π 3 = t g 2 π - π 3 = - t g π 3 = - 3

Если же представить угол альфа в виде 5 π 3 = π + 2 π 3 , то результат применениея мнемонического правила будет неверным.

t g 5 π 3 = t g π + 2 π 3 = - t g 2 π 3 = - (- 3) = 3

Неверный результат обусловлен тем, что угол 2 π 3 не явдяется острым.

Доказательство формул приведения основывается на свойствах периодичности и симметричности тригонометрических функций, а также на свойстве сдвига на углы π 2 и 3 π 2 . Доказательство справедливости всех формул приведения иожно проводить без учета слагаемого 2 πz , так как оно обозначает изменение угла на целое число полных оборотов и как раз отражает свойство периодичности.

Первые 16 формул следуют напрямую из свойств основных тригонометрических функций: синуса, косинуса, тангенса и котанганса.

Приведем доказательство формул приведения для синусов и косинусов

sin π 2 + α = cos α и cos π 2 + α = - sin α

Посмотрим на единичную окружность, начальная точка которой после повоторота на угол α перешла в точку A 1 x , y , а после поворота на угол π 2 + α - в точку A 2 . Из обеих точек проведем перпендикуляры к оси абсцисс.

Два прямоугольных треугольника O A 1 H 1 и O A 2 H 2 равны по гипотенузе и прилежащим к ней углам. Из расположения точек на окружности и равенства треугольников можно сделать вывод о том, что точка A 2 имеет координаты A 2 - y , x . Используя определения синуса и косинуса, запишем:

sin α = y , cos α = x , sin π 2 + α = x , cos π 2 + α = y

sin π 2 + α = cos α , cos π 2 + α = - sin α

С учетом основных тождеств тригонометрии и только что доказанного, можно записать

t g π 2 + α = sin π 2 + α cos π 2 + α = cos α - sin α = - c t g α c t g π 2 + α = cos π 2 + α sin π 2 + α = - sin α cos α = - t g α

Для доказательства формул приведения с аргументом π 2 - α его необходимо представить в виде π 2 + (- α) . Например:

cos π 2 - α = cos π 2 + (- α) = - sin (- α) = sin α

В доказательстве используются свойства тригонометрических функций с аргументами, противоположными по знаку.

Все остальные формулы приведения можно доказать на базе записанных выше.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Они относятся к разделу «тригонометрия» в математике. Суть их заключается в приведении тригонометрических функций углов к более «простому» виду. О важности их знания написать можно много. Этих формул аж 32 штуки!

Не пугайтесь, учить их не надо, как и многие другие формулы в курсе математики. Лишней информацией голову забивать не нужно, необходимо запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!» – это значит, что действительно, это необходимо именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

– задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.

– задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.

– задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.

– стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от 0 до 450 градусов:

угол альфа лежит пределах от 0 до 90 градусов

* * *

Итак, необходимо уяснить «закон», который здесь работает:

1. Определите знак функции в соответствующей четверти.

Напомню их:

2. Запомните следующее:

функция изменяется на кофункцию

функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Вот и всё!

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов, значит:

Вот вам ещё дополнительное подтверждение того, что синусы смежных углов равны:

Угол лежит во второй четверти, синус во второй четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов, значит:

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

***

В статье на решение был отмечен такой факт – синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Включайся в дискуссию
Читайте также
Шейные позвонки человека и жирафа
Из скольких позвонков состоит шейный отдел жирафа
Упражнения по чтению гласных в четырех типах слога