Подпишись и читай
самые интересные
статьи первым!

Экзаменационный билет по физике вариант 1417. Экзаменационные билеты по физике

1 Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение.

2 Задача на применение закона сохранения массового числа и электрического заряда.

1 Взаимодействие тел. Сила. Второй закон Ньютона.
2. Л.Р. «измерение показателя преломления стекла»
Б№3

1 Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.

2 Задача на определение периода и частоты свободных колебаний в колебательном контуре.

1 Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.

2 Задача на применение первого закона термодинамики.

1 Превращение энергии при механических колебаниях. Свободные и вынужденные колебания. Резонанс.
2 .Л.Р. «РАСЧЕТ И ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ДВУХ ПАРАЛЛЕЛЬННО СОЕДИНЕННЫХ РЕЗИСТОРОВ»
Б№6

1 Опытное обоснование основных положений молекулярно-кинетической теории (МКТ) строения вещества. Масса и размер молекул. Постоянная Авогадро.

2 Задача на движение или равновесие заряженной частицы в электрическом поле.

1 Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.

2 Задача на определение индукции магнитного поля (по закону Ампера или по формуле для расчета силы Лоренца).

1 Уравнение состояния идеального газа. (Уравнение Менделеева-Клапейрона.) Изопроцессы.

2 Задача на применение уравнения Эйнштейна для фотоэффекта.

1 Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха. Измерение влажности воздуха.
2. Л.Р. «ИЗМЕРЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ПОМОЩЬЮ ДИФРАКЦИОННОЙ РЕШЕТКИ»
Б№10

1 Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел.

2 Задача на определение показателя преломления прозрачной среды.

1 Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Применение первого закона к изопроцессам. Адиабатный процесс.

2 Задача на применение закона электромагнитной индукции.

1 Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.

2 Задача на применение закона сохранения энергии.

1 Конденсаторы. Электроемкость конденсатора. Применение конденсаторов.

2 Задача на применение уравнения состояния идеального газа.

1 Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.
2. Л.Р. «ИЗМЕРЕНИЕ МАССЫ ТЕЛА»
Б№15

1 Магнитное поле, условия его существования. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие. Магнитная индукция.
2. Л.Р. «ИЗМЕРЕНИЕ ВЛАЖНОСТИ ВОЗДУХА»


1 Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.

2 Задача на применение графиков изопроцессов.

1 Электромагнитная индукция. Магнитный поток. За кон электромагнитной индукции. Правило Ленца.

2 Задача на определение работы газа с помощью гра фика зависимости давления газа от его объема.

1 Явление самоиндукции. Индуктивность. Электромагнитное поле.

2 Задача на определение модуля Юнга материала, из которого изготовлена проволока.

1 Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний.

2 Задача на применение закона Джоуля-Ленца.

1 Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования.
2. Л.Р. «ИЗМЕРЕНИЕ МОЩНОСТИ ЛАМПОЧКИ НАКАЛИВАНИЯ»
Б№21

1 Волновые свойства света. Электромагнитная теория света.

2 Задача на применение закона Кулона.

1 Опыты Резерфорда по рассеянию а-частиц. Ядерная модель атома. Квантовые постулаты Бора.
2. Л.Р. «ИЗМЕРЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ МАТЕРИАЛА, ИЗ КОТОРОГО СДЕЛАН ПРОВОДНИК»
Б№23

1 Испускание и поглощение света атомами. Спектральный анализ.
2. Л.Р. «ИЗМЕРЕНИЕ ЭДС И ВНУТРЕННЕГО СОПРОТИВЛЕНИЯ ИСТОЧНИКА ТОКА С ИСПОЛЬЗОВАНИЕМ АМПЕРМЕТРА И ВОЛЬТМЕТРА»
Б№24

1 Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Применение фотоэффекта в технике.

2 Задача на применение закона сохранения импульса.

1 Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция, условия ее осуществления. Термоядерные реакции.
2. Л.Р. «РАСЧЕТ ОБЩЕГО СОПРОТИВЛЕНИЯ ДВУХ ПОСЛЕДОВАТЕЛЬНО СОЕДИНЕННЫХ РЕЗИСТОРОВ»
Б№26

1 Радиоактивность. Виды радиоактивных излучений и методы их регистрации. Биологическое действие ионизирующих излучений.

2. Л.Р. «ОЦЕНКА МАССЫ ВОЗДУХА В КЛАССНОЙ КОМНАТЕ ПРИ ПОМОЩИ НЕОБХОДИМЫХ ИЗМЕОЕНИЙ И РАСЧЕТОВ».

БИЛЕТ № 1
№ 1 Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение.
Механическим движением называют изменение положения тела (или его частей) относительно других тел. Например, человек, едущий на эскалаторе в метро, находится в покое относительно самого эскалатора и перемещается относительно стен туннеля; гора Эльбрус находится в покое относительно Земли и движется вместе с Землей относительно Солнца.
Из этих примеров видно, что всегда надо указать тело, относительно которого рассматривается движение, его называют телом отсчета. Система координат, тело отсчета, с которым она связана, и выбранный способ измерения времени образуют систему отсчета.
Положение тела задается координатой . Рассмотрим два примера. Размеры орбитальной станции, находящейся на орбите около Земли, можно не учитывать, а рассчитывая траекторию движения космического корабля при стыковке со станцией, без учета ее размеров не обойтись. Таким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой. Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем (l). Единица пути - метр.
Механическое движение характеризуется тремя физическими величинами: перемещением, скоростью и ускорением .
Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение - величина векторная. Единица перемещения - метр.
Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка . Промежуток времени считается достаточно малым, если скорость при неравномерном движении в течение этого промежутка не менялась. Определяющая формула скорости имеет вид v = s/t. Единица скорости - м/с. На практике используют единицу измерения скорости км/ч (36 км/ч = 10 м/с). Измеряют скорость спидометром.
Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло . Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле
Единица ускорения -
Характеристики механического движения связаны между собой основными кинематическими уравнениями :

Предположим, что тело движется без ускорения (самолет на маршруте), его скорость в течение продолжительного времени не меняется, а = 0, тогда кинематические уравнения будут иметь вид:

Движение, при котором скорость тела не меняется , т. е. тело за любые равные промежутки времени перемещается на одну и ту же величину, называют равномерным прямолинейным движением .
Во время старта скорость ракеты быстро возрастает, т. е. ускорение а > 0, а = const.
В этом случае кинематические уравнения выглядят так:

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называют равноускоренным.

При торможении автомобиля скорость уменьшается одинаково за любые равные промежутки времени , ускорение направлено в сторону, противоположную движению; так как скорость уменьшается, то уравнения принимают вид:

Такое движение называют равнозамедленным .
Все физические величины, характеризующие движение тела (скорость, ускорение, перемещение), а также вид траектории, могут изменяться при переходе из одной системы к другой, т. е. характер движения зависит от выбора системы отсчета, в этом и проявляется относительность движения . Например, в воздухе происходит дозаправка самолета топливом. В системе отсчета, связанной с самолетом, другой самолет находится в покое, а в системе отсчета, связанной с Землей, оба самолета находятся в движении. При движении велосипедиста точка колеса в системе отсчета, связанной с осью, имеет траекторию, представленную на рисунке 1. В системе отсчета, связанной с Землей, вид траектории оказывается другим (рис. 2).

№ 2. Задача на применение закона сохранения массового числа и электрического заряда.
Определите, какая частица участвует в осуществлении ядерной реакции
Решение : Воспользовавшись свойством сохранения числа протонов и общего числа нуклонов при осуществлении ядерных реакций, можно определить, что неизвестная частица х содержит два протона и состоит из четырех нуклонов. Следовательно, это ядро атома гелия Не (а-частица).

Билет № 2

№ 1 Взаимодействие тел. Сила. Второй закон Ньютона.
Простые наблюдения и опыты, например с тележками (рис. 3), приводят к следующим качественным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной; б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия . Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.
Взаимодействия отличаются друг от друга и количественно, и качественно . Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или чем ближе два одноименных заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия количественной характеристикой является сила. Сила - причина ускорения тел (в инерциальной системе отсчета). Сила - это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.
Единица силы - ньютон. 1 ньютон - это сила, которая телу массой 1 кг сообщает ускорение 1 в направлении действия этой силы, если другие тела

на него не действуют . Равнодействующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу.

Качественно по своим свойствам взаимодействия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием зарядов у частиц либо с движением заряженных частиц. На основании опытных данных были сформулированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо пропорционально равнодействующей всех сил, действующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействующая сила:
БИЛЕТ № 3

№ 1.Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.
Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только под действием силы, т. е. в результате взаимодействия с другими телами . Однако существуют величины, которые могут сохраняться при взаимодействии тел. Такими величинами являются энергия и импульс.
Импульсом тела называют векторную физическую величину , являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается р. Импульс тела равен произведению массы тела на его скорость: р = mv. Направление вектора импульса р совпадает с направлением вектора скорости тела 0. Единица измерения импульса - кг м/с.
Для импульса системы тел выполняется закон сохранения, который справедлив только для замкнутых физических систем . В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в н ее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае p1 = р2, где pl - начальный импульс системы, а р2 - конечный. В случае двух тел, входящих в систему, это выражение имеет вид m1v1 + m2v2 = m1"v1" + m2"v2" , где ml и m2 - массы тел, а v1 и v2 - скорости до взаимодействия, v1" и v2" - скорости после взаимодействия (рис. 5).

Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы . Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия . В случае незамкнутой системы импульс тел системы не сохраняется . Однако если в системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.
Экспериментальные исследования взаимодействий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел действительно остается неизменной.
В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и скорость его движения изменяется от v0 до v, то ускорение движения а тела равно Ha основании второго закона Ньютона для силы F можно записать , отсюда следует
Ft - векторная физическая величина, характеризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время ее действия, называется импульсом силы. Единица импульса силы в СИ - Н*с
Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение - это такое движение тела, которое возникает после отделения от тела его части.
Пусть тело массой т покоилось. От тела отделилась со скоростью vl какая-то его часть массой т1. Тогда оставшаяся часть придет в движение в противоположную сторону со скоростью D2, масса оставшейся части т2. Действительно, сумма импульсов обеих частей тела до отделения была равна нулю и после разделения будет равна нулю
Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому
Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения; основы теории жидкостного реактивного двигателя, а также элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспечения на них. Технические идеи Циолковского находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.
№ 2. Задача на определение периода и частоты свободных колебаний в колебательном контуре.

БИЛЕТ №4

№ 1. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.
Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации, или силами всемирного тяготения. Сила всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил, что сила равна:
массы взаимодействующих тел, R - расстояние между ними, G - коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами. В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки.
Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если m1 = m2 = 1 кг, R = 1 м, то G = F, т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м. Численное значение: Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).
Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свободного падения. В соответствии со вторым законом Ньютона g = Ft*m следовательно, Ft = mg. Сила тяжести всегда направлена к центру Земли. В зависимости от высоты h над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2.
В технике и быту широко используется понятие веса тела. Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете (рис. 6). Вес тела обозначается Р. Единица веса - Н. Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

Рассмотрим случай, когда тело вместе с опорой не движется. В этом случае сила реакции опоры, а следовательно, и вес тела равен силе тяжести (рис. 7): Р = N = mg.

В случае движения тела вертикально вверх вместе с опорой с ускорением по второму закону Ньютона можно записать mg + N = та (рис. 8, а)
В проекции на ось OX: -mg + N = та, отсюда N = m(g + a).
Следовательно, при движении вертикально вверх с ускорением вес тела увеличивается и находится по формуле Р = m(g + a).
Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой. Действие перегрузки испытывают на себе космонавты как при взлете космической ракеты, так и при торможении корабля при входе в плотные слои атмосферы. Испытывают перегрузки и летчики при выполнении фигур высшего пилотажа, и водители автомобилей при резком торможении.
Если тело движется вниз по вертикали, то с помощью аналогичных рассуждений получаем

т. е. вес при движении по вертикали с ускорением будет-меньше силы тяжести (рис. 8, б).
Если тело свободно падает, то в этом случае P = (g- g)m = 0.
Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, поэтому в корабле наблюдается состояние невесомости.№ 2. Задача на применение первого закона термодинамики.

БИЛЕТ № 5

№ 1. Превращение энергии при механических колебаниях. Свободные и вынужденные колебания. Резонанс.
Механическими колебаниями называют движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени. Основными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение - это отклонение тела от положения равновесия. Амплитуда - модуль максимального отклонения от положения равновесия. Частота - число полных колебаний, совершаемых в единицу времени. Период - время одного полного колебания, т. е. минимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/Т.
Простейший вид колебательного движения - гармонические колебания, при которых колеблющаяся величина изменяется со временем по закону синуса или косинуса (рис. 9).

Свободными называют колебания, которые совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на систему, совершающую колебания. Например, колебания груза на нити (рис. 10).
Рассмотрим процесс превращения энергии на примере колебаний груза на нити (см. рис. 10).
При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке А маятник

Обладает потенциальной энергией mgh. При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратится в кинетическую энергию mv^2/2. В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном отклонении от положения равновесия становится равной нулю. При колебательном движении всегда происходят периодические превращения его кинетической и потенциальной энергии.
При свободных механических колебаниях неизбежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодической внешней силы, то такие колебания называют вынужденными. Например, родители раскачивают ребенка на качелях, поршень движется в цилиндре двигателя автомобиля, колеблются нож электробритвы и игла швейной машины. Характер вынужденных колебаний зависит от характера действия внешней силы, от ее величины, направления, частоты действия и не зависит от размеров и свойств колеблющегося тела. Например, фундамент мотора, на котором он закреплен, совершает вынужденные колебания с частотой, определяемой только числом оборотов мотора, и не зависит от размеров фундамента.

При совпадении частоты внешней силы и частоты собственных колебаний тела амплитуда вынужденных колебаний резко возрастает. Такое явление называют механическим резонансом. Графически зависимость амплитуды вынужденных колебаний от частоты действия внешней силы показана на рисунке 11.
Явление резонанса может быть причиной разрушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически действующей силы. Поэтому, например, двигатели в автомобилях устанавливают на специальных амортизаторах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».
При отсутствии трения амплитуда вынужденных колебаний при резонансе должна возрастать со временем неограниченно. В реальных системах амплитуда в установившемся режиме резонанса определяется условием потерь энергии в течение периода и работы внешней силы за то же время. Чем меньше трение, тем больше амплитуда при резонансе.

БИЛЕТ № 6.

№ 1.Опытное обоснование основных положений молекулярно-кинетической теории (МКТ) строения вещества. Масса и размер молекул. Постоянная Авогадро.
Молекулярно-кинетическая теория - это раздел физики, изучающий свойства различных состояний вещества, основывающийся на представлениях о существовании молекул и атомов как мельчайших частиц вещества. В основе МКТ лежат три основных положения:
1. Все вещества состоят из мельчайших частиц: молекул, атомов или ионов. 2. Эти частицы находятся в непрерывном хаотическом движении, скорость которого определяет температуру вещества. 3. Между частицами существуют силы притяжения и отталкивания, характер которых зависит от расстояния между ними.
Основные положения МКТ подтверждаются многими опытными фактами. Существование молекул, атомов и ионов доказано экспериментально, молекулы достаточно изучены и даже сфотографированы с помощью электронных микроскопов. Способность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непрерывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостей смачивать некоторые твердые тела, процессы окрашивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии - способность молекул одного вещества проникать в промежутки между молекулами другого - тоже подтверждает основные положения МКТ. Явлением диффузии объясняется, например, распространение запахов, смешивание разнородных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непрерывного хаотического движения молекул является также и броуновское движение - непрерывное хаотическое движение микроскопических частиц, нерастворимых в жидкости.
Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было доказано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движения разработал А. Эйнштейн. Законы движения частиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсивности броуновского движения - уменьшение температуры. Существование броуновского движения убедительно подтверждает движение молекул.
Любое вещество состоит из частиц, поэтому количество вещества v принято считать пропорциональным числу частиц, т. е. структурных элементов, содержащихся в теле.
Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С12. Отношение числа молекул вещества к количеству вещества называют постоянной Авогадро:

Постоянная Авогадро показывает, сколько атомов и молекул содержится в одном моле вещества. Молярная масса - масса одного моля вещества, равная отношению массы вещества к количеству вещества: М = m/v
Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной молекулы:

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с высокой точностью определена несколькими физическими методами. Массы молекул и атомов со значительной степенью точности определяются с помощью масс-спектрографа.
Массы молекул очень малы. Например, масса молекулы воды:
Молярная масса связана с относительной молекулярной массой Мг. Относительная молекулярная масса - это величина, равная отношению массы молекулы данного вещества к 1/12 массы атома углерода С12. Если известна химическая формула вещества, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину молярной массы этого вещества.
Диаметром молекулы принято считать минимальное расстояние, на которое им позволяют сблизиться силы отталкивания. Однако понятие размера молекулы является условным. Средний размер молекул порядка 10^-10м.
№ 2. Задача на движение или равновесие заряженной частицы в электрическом поле.

Ответ: масса заряженной пылинки, находящейся в поле конденсатора, 10^(-7) кг.

БИЛЕТ № 7.

№ 1. Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.
1. Понятие идеального газа, его свойства. 2. Объяснение давления газа. 3. Необходимость измерения температуры. 4. Физический смысл температуры. 5. Температурные шкалы. 6. Абсолютная температура.
Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. Идеальным принято считать газ, если: а) между молекулами отсутствуют силы притяжения, т. е. молекулы ведут себя как абсолютно упругие тела; б) газ очень разряжен, т.е. расстояние между молекулами намного больше размеров самих молекул; в) тепловое равновесие по всему объему достигается мгновенно. Условия, необходимые для того, чтобы реальный газ обрел свойства идеального, осуществляются при соответствующем разряжении реального газа. Некоторые газы даже при комнатной температуре и атмосферном давлении слабо отличаются от идеальных. Основными параметрами идеального газа являются давление, объем и температура.
Одним из первых и важных успехов МКТ было качественное и количественное объяснение давления газа на стенки сосуда. Качественное объяснение заключается в том, что молекулы газа при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда
На основании использования основных положений молекулярно-кинетической теории было получено основное уравнение МКТ идеального газа,
которое выглядит так: , где р - давление идеального газа, m0 - масса молекулы, среднее значение концентрация молекул, квадрата скорости молекул.
Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа получим основное уравнение МКТ идеального газа в виде:
Однако, измерив только давление газа, невозможно узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужно измерение еще какой-то физической величины, связанной со средней кинетической энергией молекул. Такой величиной является температура. Температура - скалярная физическая величина, описывающая состояние термодинамического равновесия (состояния, при котором не происходит изменения микроскопических параметров). Как термодинамическая величина температура характеризует тепловое состояние системы и измеряется степенью его отклонения от принятого за нулевое, как молекулярно-кинетиче-ская величина - характеризует интенсивность хаотического движения молекул и измеряется их средней кинетической энергией. Ек = 3/2 kT, где k = 1,38 10^(-23) Дж/К и называется постоянной Больцмана.
Температура всех частей изолированной системы, находящейся в равновесии, одинакова. Измеряется температура термометрами в градусах различных температурных шкал. Существует абсолютная термодинамическая шкала (шкала Кельвина) и различные эмпирические шкалы, которые отличаются начальными точками. До введения абсолютной шкалы температур в практике широкое распространение получила шкала Цельсия (за О °С принята точка замерзания воды, за 100 °С принята точка кипения воды при нормальном атмосферном давлении).
Единица температуры по абсолютной шкале называется Кельвином и выбрана равной одному градусу по шкале Цельсия 1 К = 1 °С. В шкале Кельвина за ноль принят абсолютный ноль температур, т. е. температура, при которой давление идеального газа при постоянном объеме равно нулю. Вычисления дают результат, что абсолютный нуль температуры равен -273 °С. Таким образом, между абсолютной шкалой температур и шкалой Цельсия существует связь Т = t °C + 273. Абсолютный нуль температур недостижим, так как любое охлаждение основано на испарении молекул с поверхности, а при приближении к абсолютному нулю скорость поступательного движения молекул настолько замедляется, что испарение практически прекращается. Теоретически при абсолютном нуле скорость поступательного движения молекул равна нулю, т. е. прекращается тепловое движение молекул.

№ 2. Задача на определение индукции магнитного поля (по закону Ампера или по формуле для расчета силы Лоренца).

На прямолинейный участок проводника с током длиной 2 см между полюсами постоянного магнита действует сила 10^(-3) Н при силе тока в проводнике 5 А. Определите магнитную индукцию, если вектор индукции перпендикулярен проводнику


БИЛЕТ № 8.

№ 1. Уравнение состояния идеального газа. (Уравнение Менделеева-Клапейрона.) Изопроцессы.
Состояние данной массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния.

Для произвольной массы газа состояние газа описывается уравнением Менделеева-Клапейрона: pV = mRT/M, где р - давление, V - объем, m - масса, М - молярная масса, R - универсальная газовая постоянная. Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К (R = 8,31 ДжДмоль К)).
Уравнение Менделеева-Клапейрона показывает, что возможно одновременное изменение трех параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют три процесса: изотермический, изохорный и изобарный.
Изопроцессом называют процесс, происходящий с данной массой газа при одном постоянном параметре - температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.
Изотермическим называют процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля-Мариотта: pV = const.
Изохорным называют процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля: V = const, p/T = const.
Изобарным называют процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T = const прир = const и называется законом Гей-Люссака. Все процессы можно изобразить графически (рис. 15).
Реальные газы удовлетворяют уравнению состояния идеального газа при не слишком высоких давлениях (пока собственный объем молекул пренебрежительно мал по сравнению с объемом сосуда,

В котором находится газ) и при не слишком низких температурах (пока потенциальной энергией межмолекулярного взаимодействия можно пренебречь по сравнению с кинетической энергией теплового движения молекул), т. е. для реального газа это уравнение и его следствия являются хорошим приближением

№ 2. Задача на применение уравнения Эйнштейна для фотоэффекта.

БИЛЕТ № 9.

№ 1. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха. Измерение влажности воздуха.
Испарение - парообразование, происходящее при любой температуре со свободной поверхности жидкости. Неравномерное распределение кинетической энергии молекул при тепловом движении приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с другими молекулами. Большей кинетической энергией обладают молекулы, имеющие большую скорость, а температура тела зависит от скорости движения его молекул, следовательно, испарение сопровождается охлаждением жидкости. Скорость испарения зависит: от площади открытой поверхности, температуры, концентрации молекул вблизи жидкости. Конденсация - процесс перехода вещества из газообразного состояния в жидкое.
Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала испарения концентрация вещества в газообразном состоянии достигнет такого значения, при котором число молекул, возвращающихся в жидкость, становится равным числу молекул, покидающих жидкость за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества. Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называют насыщенным паром. (Паром называют совокупность молекул, покинувших жидкость в процессе испарения.) Пар, находящийся при давлении ниже насыщенного, называют ненасыщенным.
Вследствие постоянного испарения воды с поверхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосферное давление представляет собой сумму давления сухого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром. Насыщенный пар в отличие от ненасыщенного не подчиняется законам идеального газа. Так, давление насыщенного пара не зависит от объема, но зависит от температуры. Эта зависимость не может быть выражена простой формулой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от температуры составлены таблицы, по которым можно определить его давление при различных температурах.
Давление водяного пара, находящегося в воздухе при данной температуре, называют абсолютной влажностью, или упругостью водяного пара. Поскольку давление пара пропорционально концентрации молекул, можно определить абсолютную влажность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в килограммах на метр кубический (р).
Большинство явлений, наблюдаемых в природе, например быстрота испарения, высыхание различных веществ, увядание растений, зависит не от количества водяного пара в воздухе, а от того, насколько это количество близко к насыщению, т. е. от относительной влажности, которая характеризует степень насыщения воздуха водяным паром. При низкой температуре и высокой влажности повышается теплопередача и человек подвергается переохлаждению. При высоких температурах и влажности теплопередача, наоборот, резко сокращается, что ведет к перегреванию организма. Наиболее благоприятной для человека в средних климатических широтах является относительная влажность 40-60%. Относительной влажностью называют отношение плотности водяного пара (или давления), находящегося в воздухе при данной температуре, к плотности (или давлению) водяного пара при той же температуре, выраженное в процентах, т. е.

Относительная влажность колеблется в широких пределах. Причем суточный ход относительной влажности обратен суточному ходу температуры. Днем, с возрастанием температуры и, следовательно, с ростом давления насыщения, относительная влажность убывает, а ночью возрастает. Одно и то же количество водяного пара может либо насыщать, либо не насыщать воздух. Понижая температуру воздуха, можно довести находящийся в нем пар до насыщения. Точкой росы называют температуру, при которой пар, находящийся в воздухе, становится насыщенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начинается конденсация водяного пара. Для определения влажности воздуха используются приборы, которые называются гигрометрами и психрометрами.

БИЛЕТ № 10.

№ 1.
Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел.

Каждый может легко разделить тела на твердые и жидкие. Однако это деление будет только по внешним признакам. Для того чтобы выяснить, какими же свойствами обладают твердые тела, будем их нагревать. Одни тела начнут гореть (дерево, уголь) - это органические вещества. Другие будут размягчаться (смола) даже при невысоких температурах - это аморфные. Третьи будут изменять свое состояние при нагревании так, как показано на графике (рис. 17). Это и есть кристаллические тела. Такое поведение кристаллических тел при нагревании объясняется их внутренним строением. Кристаллические тела - это такие тела, атомы и молекулы которых расположены в определенном порядке, и этот порядок сохраняется на достаточно большом расстоянии. Пространственное периодическое расположение атомов или ионов в кристалле называют кристаллической решеткой. Точки кристаллической решетки, в которых расположены атомы или ионы, называют узлами кристаллической решетки.

Кристаллические тела бывают монокристаллами и поликристаллами. Монокристалл обладает единой кристаллической решеткой во всем объеме.

Анизотропия монокристаллов заключается в зависимости их физических свойств от направления. Поликристалл представляет собой соединение мелких, различным образом ориентированных монокристаллов (зерен) и не обладает анизотропией свойств. Большинство твердых тел имеют поликристаллическое строение (минералы, сплавы, керамика).

Основными свойствами кристаллических тел являются: определенность температуры плавления, упругость, прочность, зависимость свойств от порядка расположения атомов, т. е. от типа кристаллической решетки.

Аморфными называют вещества, у которых отсутствует порядок расположения атомов и молекул по всему объему этого вещества. В отличие от кристаллических веществ аморфные вещества изотропны. Это значит, что свойства одинаковы по всем направлениям. Переход из аморфного состояния в жидкое происходит постепенно, отсутствует определенная температура плавления. Аморфные тела не обладают упругостью, они пластичны. В аморфном состоянии находятся различные вещества: стекла, смолы, пластмассы и т. п.

Упругость - свойство тел восстанавливать свою форму и объем после прекращения действия внешних сил или других причин, вызвавших деформацию тел. Для упругих деформаций справедлив закон Гука, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям а = Е|с|, где а - механическое напряжение, е - относительное удлинение, Е - модуль Юнга (модуль упругости). Упругость обусловлена взаимодействием и тепловым движением частиц, из которых состоит вещество.

Пластичность - свойство твердых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные деформации после того, как действие этих сил прекратится.

№ 2. Задача на определение показателя преломления прозрачной среды.

БИЛЕТ № 11.

№1. Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Применение первого закона к изопроцессам. Адиабатный процесс.
Каждое тело имеет вполне определенную структуру, оно состоит из частиц, которые хаотически движутся и взаимодействуют друг с другом, поэтому любое тело обладает внутренней энергией. Внутренняя энергия - это величина, характеризующая собственное состояние тела, т. е. энергия хаотического (теплового) движения микрочастиц системы
(молекул, атомов, электронов, ядер и т. д.) и энергия взаимодействия этих частиц. Внутренняя энергия одноатомного идеального газа определяется по формуле U = 3/2 т/М RT.
Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии: теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).
Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q).
Эти способы количественно объединены в закон сохранения энергии, который для тепловых процессов читается так: изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. , где - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. Если система сама совершает работу, то ее условно обозначают А*. Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики, можно записать так: , т.е. количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии.
При изобарном нагревании газ совершает работу над внешними силами , где V1 и V2 - начальный и конечный объемы газа. Если процесс не является изобарным, величина работы может быть определена площадью фигуры ABCD, заключенной между линией, выражающей зависимость p(V), и начальным и конечным объемами газ

Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом. В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение первого закона термодинамики примет вид: , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется. В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: . При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0, и уравнение первого закона имеет вид , т. е. переданное количество теплоты идет на увеличение внутренней энергии газа. Адиабатным называют процесс , протекающий без теплообмена с окружающей средой. Q = 0, следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается, Кривая, изображающая адиабатный процесс, называется адиабатой.

№ 2. Задача на применение закона электромагнитной индукции.

БИЛЕТ № 12.

№ 1.Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.

Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными частицами называется электромагнитным. Интенсивность электромагнитного взаимодействия определяется физической величиной - электрическим зарядом, который обозначается q. Единица электрического заряда - кулон (Кл). 1 кулон - это такой электрический заряд, который, проходя через поперечное сечение проводника за 1 с, создает в нем ток силой 1 А. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух видов зарядов. Один вид заряда назвали положительным, носителем элементарного положительного заряда является протон. Другой вид заряда назвали отрицательным, его носителем является электрон. Элементарный заряд равен Заряд частиц всегда представляется числом, кратным величине элементарного заряда.
Полный заряд замкнутой системы (в которую не входят заряды извне), т. е. алгебраическая сумма зарядов всех тел, остается постоянной: q1 + q2 + ... + qn = const. Электрический заряд не создается и не исчезает, а только переходит от одного тела к другому. Этот экспериментально установленный факт называется законом сохранения электрического заряда. Никогда и нигде в природе не возникает и не исчезает электрический заряд одного знака. Появление и исчезновение электрических зарядов на телах в большинстве случаев объясняется переходами элементарных заряженных частиц - электронов - от одних тел к другим.
Электризация - это сообщение телу электрического заряда. Электризация может происходить, например, при соприкосновении (трении) разнородных веществ и при облучении. При электризации в теле возникает избыток или недостаток электронов.
В случае избытка электронов тело приобретает отрицательный заряд, в случае недостатка - положительный.
Законы взаимодействия неподвижных электрических зарядов изучает электростатика
Основной закон электростатики был экспериментально установлен французским физиком Шарлем Кулоном и читается так: модуль силы взаимодействия двух точечных неподвижных электрических зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними

Г - расстояние между ними, k - коэффициент пропорциональности, зависящий от выбора системы единиц, в СИ

Величина, показывающая, во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называется диэлектрической проницаемостью среды Е. Для среды с диэлектрической проницаемостью е закон Кулона записывается следующим образом

В СИ коэффициент k принято записывать следующим образом:

Электрическая постоянная, численно равная

Использованием электрической постоянной закон Кулона имеет вид:

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулонов-ским взаимодействием. Кулоновские силы можно изобразить графически (рис. 20, 21).

№ 2. Задача на применение закона сохранения энергии.

БИЛЕТ № 13.

№ 1.Конденсаторы. Электроемкость конденсатора. Применение конденсаторов.
Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы. Конденсатор - это система двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные диэлектриком, образуют плоский конденсатор. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность между пластинами будет в два раза больше, чем напряженность одной пластины. Вне пластин напряженность равна нулю.

Обозначаются конденсаторы на схемах так:

Электроемкостью конденсатора называют величину, равную отношению величины заряда одной из пластин к напряжению между ними. Электроемкость обозначается С.

По определению С = q/U. Единицей электроемкости является фарад (Ф). 1 фарад - это электроемкость такого конденсатора, напряжение между обкладками которого равно 1 вольту при сообщении обкладкам разноименных зарядов по 1 кулону.

Где ЕО - электрическая постоянная, £ - диэлектрическая постоянная среды, S - площадь

В зависимости от типа диэлектрика конденсаторы бывают воздушные, бумажные, слюдяные.

Конденсаторы применяются для накопления электроэнергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного тока, в выпрямителях, колебательных контурах и других радиоэлектронных устройствах.

№ 2. Задача на применение уравнения состояния идеального газа.


БИЛЕТ № 14.

№ 1.Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.

Мощность по определению N = A/t, следовательно,
Русский ученый X. Ленд и английский ученый Д. Джоуль опытным путем в середине прошлого века установили независимо друг от друга закон, который называется законом Джоуля - Ленца и читается так: при прохождении тока по проводнику количество теплоты, выделившееся в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока. .
Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внешние сопротивления и источ-ник тока (рис. 25). Как один из участков цепи, источник тока обладает сопротивлением, которое
называют внутренним, r.

Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщалась дополнительная энергия, она появляется за счет работы по перемещению зарядов, которую производят силы неэлектрического происхождения (сторонние силы) против сил электрического поля. Источник тока характеризуется энергетической характеристикой, которая называется ЭДС - электродвижущая сила источника. ЭДС измеряется отношением работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к величине этого заряда

Тивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так: I = E/(R + г). Эту зависимость опытным путем получил Георг Ом, называется она законом Ома для полной цепи и читается так: сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

БИЛЕТ № 15.

№ 1.Магнитное поле, условия его существования. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие. Магнитная индукция.
В 1820 г. датский физик Эрстед обнаружил, что магнитная стрелка поворачивается при пропускании электрического тока через проводник, находящийся около нее (рис. 27). В том же году французский физик Ампер установил, что два проводника, расположенные параллельно друг другу, испытывают взаимное притяжение, если ток течет по ним в одном направлении, и отталкивание, если токи текут в разных направлениях (рис. 28). Явление взаимодействия токов Ампер назвал электродинамическим взаимодействием. Магнитное взаимодействие движущихся электрических зарядов, согласно представлениям теории близкодействия, объясняется следующим образом: всякий движущийся электрический заряд создает в окружающем пространстве магнитное поле. Магнитное поле - особый вид материи, который возникает в пространстве вокруг любого переменного электрического поля.

С современной точки зрения в природе существует совокупность двух полей - электрического и магнитного - это электромагнитное поле, оно представляет собой особый вид материи, т. е. существует объективно, независимо от нашего сознания. Магнитное поле всегда порождается переменным электрическим, и наоборот, переменное магнитное поле всегда порождает переменное электрическое

Поле. Электрическое поле, вообще говоря, можно рассматривать отдельно от магнитного, так как носителями его являются частицы - электроны и протоны. Магнитное поле без электрического не существует, так как носителей магнитного поля нет. Вокруг проводника с током существует магнитное поле, и оно порождается переменным электрическим полем движущихся заряженных частиц в проводнике.
Магнитное поле является силовым полем. Силовой характеристикой магнитного поля называют магнитную индукцию (В). Магнитная индукция - это векторная физическая величина, равная максимальной силе, действующей со стороны магнитного поля на единичный элемент тока. В = F/IL Единичный элемент тока - это проводник длиной 1 м и силой тока в нем 1 А. Единицей измерения магнитной индукции является тесла. 1 Тл = 1 Н/А м. Магнитная индукция всегда порождается в плоскости под углом 90° к электрическому полю. Вокруг проводника с током магнитное поле также существует в перпендикулярной проводнику плоскости.
Магнитное поле является вихревым полем. Для графического изображения магнитных полей вводятся силовые линии, или линии индукции, - это такие линии, в каждой точке которых вектор магнитной индукции направлен по касательной. Направление силовых линий находится по правилу
буравчика. Если буравчик ввинчивать по направлению тока, то направление вращения рукоятки совпадет с направлением силовых линий. Линии магнитной индукции прямого провода с током представляют собой концентрические окружности, расположенные в плоскости, перпендикулярной проводнику (рис. 29).

Как установил Ампер, на проводник с током, помещенный в магнитное поле, действует сила. Сила, действующая со стороны магнитного поля на проводник с током, прямо пропорциональна силе тока, длине проводника в магнитном поле и перпендикулярной составляющей вектора магнитной индукции. Это и есть формулировка закона Ампера, который записывается так: Fa = ILВ sin a. Направление силы Ампера определяют по правилу левой руки. Если левую руку расположить так, чтобы четыре пальца показывали направление тока, перпендикулярная составляющая вектора магнитной индукции (В = В sin а) входила в ладонь, то отогнутый на 90° большой палец покажет направление силы Ампера (рис. 30).

БИЛЕТ № 16.

№ 1. Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.
Полупроводники - это вещества, удельное сопротивление которых убывает с пов

и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Билет № 1

1. Потенциальная и кинетическая энергия. Примеры перехода энергии из одного вида в другой. Закон сохранения механической энергии.

2. Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.

3. Какова энергия фотона, импульс которого равна 610"16 кг-м/с.

Билет № 2

1. Принцип действия тепловой машины. Коэффициент полезного действия тепловых машин.

2. Опыты Резерфорда по рассеянию а-частиц. Ядерная модель атома.

3. За какое время автомобиль двигаясь из состояния покоя с ускорением 0,8 м/с2, пройдет 50 м?

Билет № 3

1. Равновесие твердых тел: момент силы; условия равновесия твердого тела.

2. Интерференция света. Электромагнитная природа света.

3. Каково ускорение свободного падения на высоте, равной половине радиуса Земли?

Билет № 4

1. Плавление кристаллических тел. Удельная теплота плавления.

2. Переменный ток: генератор переменного тока; действующее значение силы переменного тока и напряжения.

3. Чему равен модуль скорости (м/с) девочки, находящейся на вращающейся с угловой скоростью 0,5 рад/с карусели? Расстояние девочки от оси вращения 2 м.

Билет № 5

1. Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе.

2. Электрическое и магнитное поле. Источники этих полей и индикаторы для их обнаружения.

3. Как изменится концентрация кислорода в баллоне, если температура понизится от 327 до 27°С? Изменением объема баллона пренебречь.

Билет № 6

1. Ускорение, скорость и перемещение при равноускоренном прямолинейном движении.

2. Электроемкость. Конденсаторы. Применение конденсаторов.

3. Лабораторная работа: наблюдение явления электромагнитной индукции.

Билет № 7

1. Испарение и конденсация. Кипение. Удельная теплота парообразование.

2. Природа электрического тока в металлах. Зависимость электрического сопротивления от температуры.

3. Лабораторная работа: определение фокусного расстояния линзы.

Билет № 8

1. Механическое движение. Его характеристики. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Скорость.

2. Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.

3. Газ находящийся в сосуде, состоит из 84% азота и 16% кислорода (по массе). Сколько молекул азота приходится на одну молекулу кислорода? Ма=28 г/моль, Мк=32 г/моль.

Билет № 9

1. Силы трения; природа сил трения; коэффициент трения скольжения.

2. Электрический ток в электролитах. Законы Фарадея.

3. Лабораторная работа: последовательное соединение проводников.

Билет № 10

1. Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний.

2. Радиоактивность. Виды радиоактивных излучений и методы их регистрации. Биологическое действие ионизирующих излучений.

Билет № 11

1. Линзы. Фокус линзы. Построение изображений в собирающей линзе.

2. Первый закон термодинамики и его применение в изоп-роцессах в газах.

3. Лабораторная работа: параллельное соединение проводников.

Билет № 12

1. Электрический ток в газах.

2. Зависимость давления жидкости от скорости течения. Подъемная сила крыла самолета.

3. Лабораторная работа: экспериментальная проверка правила моментов сил на примере рычага, имеющего ось вращения.

Билет № 13

1. Основные уравнения молекулярно-кинетической теории газа.

2. Магнитное поле, условия его существования. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие. Магнитная индукция.

3. Написать недостающие обозначения в следующих ядерных реакциях:

Билет № 14

1. Внутренняя энергия тел и способы ее измерения. Виды теплопередачи, их учет и использование в быту.

3. Чему равен импульс тела массой 5 кг, если его кинетическая энергия равна 10 Дж?

Билет № 15

1. Механические волны: длина волны, скорость распространения волны. Звуковые волны.

2. Явление самоиндукции. Индуктивность.

3. Плотность газа 3 кг/м3. Давление газа 90 кПа. Найдите среднюю квадратичную скорость молекул.

Билет № 16

1. Газообразное, жидкое и твердое состояние вещества. Опытное обоснование характера движения и взаимодействия частиц из которых состоит вещество в различных агрегатных состояниях.

2. Элементы теории относительности.

3. Лабораторная работа: определение электрического сопротивления проводника с помощью амперметра и вольтметра.

Билет № 17

1. Электромагнитные волны и их свойства. Принцип радиосвязи.

2. Сила упругости. Закон Гука.

3. Лабораторная работа: измерение коэффициента трения скольжения.

Билет № 18

1. Механические волны: длина волны, скорость распространение волны. Звуковые волны.

2. Электрический ток в вакууме. Электронно-лучевая трубка.

3. Какова масса протона (в.а.е.м), летящего со скоростью 1,8 108м/с? Массу покоя протона считать равной 1 а.е.м.

Билет № 19

1. Сложение сил. Условия равновесия тел не имеющих ось вращения.

2. Дифракция и дисперсия света.

3. На пружину жесткостью 200Н/М действует сила 400Н. Определите работу, затраченную на деформацию пружины.

Билет № 20

1. Вынужденные колебания. Явление резонанса.

2. Влажность воздуха и ее измерение.

3. Как изменяется картина дифракционного спектра при удалении экрана от решетки?

Билет № 21

1. Проводники и диэлектрики в электрическом поле. Напряженность электрического поля.

2. Автоколебания: автоколебательный генератор незатухающих электромагнитных колебаний.

3. Лабораторная работа: измерение плотности твердого тела произвольной формы.

Билет № 22

1. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.

2. Взаимодействие токов. Магнитное поле тока.

3. Лабораторная работа: определение коэффициента полезного действия при подъеме предметов на наклонной плоскости.

Билет № 23

1. Механическая работа и мощность. Простые механизмы.

2. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.

3. Как изменится среднеквадратичная скорость молекул идеального газа, если давление газа уменьшится в 2 раза, концентрация молекул увеличится в 2 раза?

Билет № 24

1. Электромагнитная индукция. Магнитный поток. Закон электромагнитной индукции. Правила Ленца.

2. Колебательное движение. Математический и пружинный маятник.

3. Имея начальную скорость 18 км/ч и двигаясь равноускоренно трамвай за 10 с прошел путь 125 м. Какую скорость он приобрел в конце пути?

Билет № 25

1. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников.

2. Передача давления газами, жидкостями и твердыми телами. Закон Паскаля и его применение в гидравлических машинах.

3. Предмет находится на расстоянии 12,5 см от собирающей линзы, оптическая сила которой равна 5 дптр. На каком расстоянии от линзы получится изображение и каким оно будет?

Билет № 26

1. Законы отражения и преломления света. Показатель преломления.

2. Индуктивность и емкость в цепи переменного тока.

3. Чтобы удалить гвоздь длиной 10 см из бревна, необходимо приложить начальную силу 800 Н. Какую работу нужно совершить, чтобы этот гвоздь вытащить из бревна?

Билет № 27

1. Взаимодействие тел. Сила. Законы Ньютона.

2. Трансформация переменного тока. Передача электрической энергии. Развитие электроэнергетики в Узбекистане.

3. Через проводник в течение часа протекает электрический заряд 3600 Кл. Определите время, в течение которого протечет заряд 1200 Кл при том же токе.

Билет № 28

1. Атмосферное давление. Приборы для измерения атмосферного давления.

2. Закон Ома для полной цепи. Работа и мощность электрического тока.

3. Каково давление одноатомного газа, занимающего объем 2 л, если его внутренняя энергия 300 Дж?

Билет № 29

1. Действие жидкостей и газов на погруженное в них тело. Архимедова сила, причины ее возникновения.

2. Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция.

3. Какая сила действует на заряд Ю-"Кл, помещенный в точку, в которой напряженность электрического поля равна 3 кВ/м.

Билет № 30

1. Квантовые постулаты Бора. Испускание и поглощение света атомами. Спектральный анализ.

2. Движение материальной точки по окружности: период и частота, центростремительное ускорение, связь угловой и линейной скорости.

3. В катушке из 150 витков провода течет ток 7,5 А. При этом каждым витком создается магнитный поток 2 мВб. Какова индуктивность катушки?

Экзаменационные билеты по физике

Понравилось? Отблагодарите, пожалуйста, нас! Для Вас это бесплатно, а нам - большая помощь! Добавьте наш сайт в свою социальную сеть:

1.Равноускоренное движение. Скорость перемещения.

2.Электрический ток в вакууме и в газах.

3.Задача на фотоэффект.

1. Движение, при котором скорость тела за любые равные промежутки времени изменяются на одну и ту же величину, называется равноускоренным.

Для характеристики этого движения нужно знать скорость тела в данный момент времени или в данной точке траектории, т.е. мгновенную скорость, а также ускорение.

Ускорение - величина равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Иначе, ускорение-это быстрота изменения скорости:

Отсюда формула мгновенной скорости:

Перемещение при этом движении определяют по формуле:

Скорость -

2.Электрический ток в газах представляет собой направленное движение свободных электронов и ионов. При нормальном давлении и невысоких температурах газы содержат недостаточное для электропроводимости количество ионов и электронов и являются изоляторами. Чтобы сделать газ проводником, его надо ионизировать.

Ток в вакууме. Вакуум-это такое разряжение газа в сосуде, при котором длина свободного пробега заряженных частиц превышает размеры сосуда. Вакуум является изолятором. При нагревании металлического электрода с поверхности металла начинают «испарятся» электроны.

Явление испускания электронов с поверхности нагретых тел называются термоэлектронной эмиссией.

Ток в вакууме представляет собой направленное движение электронов, получаемых за счёт термоэлектронной эмиссии. Термоэлектронная эмиссия лежит в основе работы многих вакуумных приборов.

Билет № 2

    Равномерное движение тела по окружности и его параметры.

    Магнитное поле Вектор магнитной индукции напряжённость магнитного поля.

    Задача по ядерной реакции.

1. ДВИЖЕНИЕ ТЕЛА ПО ОКРУЖНОСТИ

При движении по криволинейной траектории, в том числе по окружности, скорость тела может изменяться как по модулю, так и по направлению. Возможно движение, при котором изменяется только направление скорости, а ее модуль сохраняется постоянным. Такое движение называется равномерным движением по окружности. Радиус, проведенный из центра окружности к телу , описал за время t2 - t1 угол Ф, который называют угловым перемещением

Угловое перемещение измеряют в радианах (рад). Радиан равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу.

Движение точки по окружности повторяется через определенные промежутки времени, равные периоду обращения.

Периодом обращения называют время, в течение которого тело совершает один полный оборот.

Период обозначают буквой Т и измеряют в секундах.

Если за время t тело совершило N оборотов, то период обращения Т равен:

Частотой обращения называют число оборотов тела за одну секунду.

За единицу частоты принят 1 оборот в секунду, сокращенно - 1с. Эта единица называется герцем (Гц).

Частота и период обращения связаны следующим образом:

Движение тела по окружности характеризуется угловой скоростью.

Угловая скорость - физическая величина, равная отношению углового перемещения к промежутку времени, за которое это перемещение произошло.

Угловая скорость обозначается буквой (омега).

За единицу угловой скорости принимают радиан в секунду (рад/с).

В случае движения тела по окружности эту скорость называют линейной.

Линейная скорость тела, равномерно движущегося по окружности, оставаясь постоянной по модулю, непрерывно изменяется по направлению и в любой точке направлена по касательной к траектории

Линейная скорость обозначается буквой v.

1. Механическое движение. Материальная точка.

Механическим движением тела называется изменение его положения в пространстве относительно других тел с течением времени. Изучает движение тел механика. Движение абсолютно твердого тела (не деформирующегося при движении и взаимодействии), при котором все его точки в данный момент времени движутся одинаково, называется поступательным движением, для его описания необходимо и достаточно описать движение одной точки тела. Движение, при котором траектории всех точек тела являются окружностями с центром на одной прямой и все плоскости окружностей перпендикулярны этой прямой, называется вращательным движением. Тело, формой и размерами которого в данных условиях можно пренебречь, называется материальной точкой.

Это пренебрежение допустимо сделать тогда, когда размеры тела малы по сравнению с расстоянием, которое оно проходит или расстоянием данного тела до других тел. Чтобы описать движение тела, нужно знать его координаты в любой момент времени. В этом и залючается основная задача механики.

2. Относительность движения. Система отсчета. Единицы измерения.

Для определения координат материальной точки необходимо выбрать тело отсчета и связать с ним систему координат и задать начало отсчета времени. Система координат и указание начала отсчета времени образуют систему отсчета, относительно которой рассматривается движение тела. Система должна двигаться с постойнной скоростью (или покоиться, что вообще говоря одно и то же). Траектория движения тела, пройденный путь и перемещение – зависят от выбора системы отсчета, т.е. механическое движение относительно. Единицей измерения длины является метр, равный расстоянию, проходимому свету в вакууме за секунды. Секунда – единица измерения времени, равна периодам излучения атома цезия-133.

3. Траектория. Путь и перемещение. Мгновенная скорость.

Траекторией тела называется линия, описываемая в пространстве движущейся материальной точкой. Путь – длина участка траектории от начального до конечного перемещения материальной точки. Радиус-вектор – вектор, соединяющий начало координат и точку пространства. Перемещение – вектор, соединяющий начальную и конечную точки участка траектории, пройденные за время. Скорость – физическая величина, характеризующая быстроту и направление движения в данный момент времени. Средняя скорость определяется как. Средняя путевая скорость равна отношению пути, пройденному телом за промежуток времени к этому промежутку. . Мгновенная скорость (вектор) – первая производная от радиус-вектора движущейся точки. . Мгновенная скорость направлена по касательной к траектории, средняя – вдоль секущей. Мгновенная путевая скорость (скаляр) – первая производная пути по времени, по величине равна мгновенной скорости

4. Равномерное прямолинейное движение. Графики зависимости кинематических величин от времени в равномерном движении. Сложение скоростей.

Движение с постоянной по модулю и направлению скоростью называется равномерным прямолинейным движением. При равномерном прямолинейном движении тело за любые равные промежутки времени проходит одинаковые расстояния. Если скорость постоянна, то пройденный путь вычисляется как. Классический закон сложения скоростей формулируется следующим образом: скорость движения материальной точки по отношению к системе отсчета, принимаемой за неподвижную, равна векторной сумме скоростей движения точки в подвижной системе и скорости движения подвижной системы относительно неподвижной.

5. Ускорение. Равноускоренное прямолинейное движение. Графики зависимости кинематических величин от времени в равноускоренном движении.

Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным движением. При неравномерном поступательном движении скорость тела изменяется с течением времени. Ускорение (вектор) – физическая величина, характеризующая быстроту изменения скорости по модулю и по направлению. Мгновенное ускорение (вектор) – первая производная скорости по времени. .Равноускоренным называется движение с ускорением, постоянным по модулю и направлению. Скорость при равноускоренном движении вычисляется как.

Отсюда формула для пути при равноускоренном движении выводится как

Также справедливы формулы, выводимая из уравнений скорости и пути при равноускоренном движении.

6. Свободное падение тел. Ускорение свободного падения.

Падением тела называется его движение в поле силы тяжести (???) . Падение тел в вакууме называется свободным падением. Экспериментально установлено, что при свободном падении тела движутся одинаково независимо от своих физических характеристик. Ускорение, с которым падают на Землю тела в пустоте, называется ускорением свободного падения и обозначается

7. Равномерное движение по окружности. Ускорение при равномерном движении тела по окружности (центростремительное ускорение)

Любое движение на достаточно малом участке траектории возможно приближенно рассматривать как равномерное движение по окружности. В процессе равномерного движения по окружности значение скорости остается постоянным, а направление вектора скорости изменяется. <рисунок>.. Вектор ускорения при движении по окружности направлен перпендикулярно вектору скорости (направленному по касательной), к центру окружности. Промежуток времени, за который тело совершает полный оборот по окружности, называется периодом. . Величина, обратная периоду, показывающая количество оборотов в единицу времени, называется частотой . Применив эти формулы, можно вывести, что, или . Угловая скорость (скорость вращения) определяется как . Угловая скорость всех точек тела одинакова, и характеризует движения вращающегося тела в целом. В этом случае линейная скорость тела выражается как , а ускорение – как .

Принцип независимости движений рассматривает движение любой точки тела как сумму двух движений – поступательного и вращательного.

8. Первый закон Ньютона. Инерциальная система отсчета.

Явление сохранения скорости тела при отсутствии внешних воздействий называется инерцией. Первый закон Ньютона, он же закон инерции, гласит: “существуют такие системы отсчета, относительно которых поступательно движущиеся тела сохраняют свою скорость постоянной, если на них не действуют другие тела”. Системы отсчета, относительно которых тела при отсутствии внешних воздействий движутся прямолинейно и равномерно, называются инерциальными системами отсчета. Системы отсчета, связанные с землей считают инерциальными, при условии пренебрежения вращением земли.

9. Масса. Сила. Второй закон Ньютона. Сложение сил. Центр тяжести.

Причиной изменения скорости тела всегда является его взаимодействие с другими телами. При взаимодействии двух тел всегда изменяются скорости, т.е. приобретаются ускорения. Отношение ускорений двух тел одинаково при любых взаимодействиях. Свойство тела, от которого зависит его ускорение при взаимодействии с другими телами, называется инертностью. Количественной мерой инертности является масса тела. Отношение масс взаимодействующих тел равно обратному отношению модулей ускорений. Второй закон Ньютона устанавливает связь между кинематической характеристикой движения – ускорением, и динамическими характеристиками взаимодействия – силами. , или, в более точном виде, , т.е. скорость изменения импульса материальной точки равна действующей на него силе. При одновременном действии на одно тело нескольких сил тело движется с ускорением, являющимся векторной суммой ускорений, которые возникли бы при воздействии каждой из этих сил в отдельности. Действующие на тело силы, приложенные к одной точке, складываются по правилу сложения векторов. Это положение называют принципом независимости действия сил. Центром масс называется такая точка твердого тела или системы твердых тел, которая движется так же, как и материальная точка массой, равной сумме масс всей системы в целом, на которую действуют та же результирующая сила, что и на тело. . Проинтегрировав это выражение по времени, можно получить выражения для координат центра масс. Центр тяжести – точка приложения равнодействующей всех сил тяжести, действующих на частицы этого тела при любом положении в пространстве. Если линейные размеры тела малы по сравнению с размером Земли, то центр масс совпадает с центром тяжести. Сумма моментов всех сил элементарных тяжести относительно любой оси, проходящей через центр тяжести, равна нулю.

10. Третий закон Ньютона.

При любом взаимодействии двух тел отношение модулей приобретенных ускорений постоянно и равно обратному отношению масс. Т.к. при взаимодействии тел векторы ускорений имеют противоположное направление, можно записать, что . По второму закону Ньютона сила, действующая на первое тело равна , а на второе . Таким образом, . Третий закон Ньютона связывает между собой силы, с которыми тела действуют друг на друга. Если два тела взаимодействуют друг с другом, то силы, возникающие между ними приложены к разным телам, равны по величине, противоположны по направлению, действуют вдоль одной прямой, имеют одну и ту же природу.

11. Силы упругости. Закон Гука.

Сила, возникающая в результате деформации тела и направленная в сторону, противоположную перемещениям частиц тела при этой деформации, называется силой упругости. Опыты со стержнем показали, что при малых по сравнению с размерами тела деформациях модуль силы упругости прямо пропорционален модулю вектора перемещения свободного конца стержня, что в проекции выглядит как . Эту связь установил Р.Гук, его закон формулируется так: сила упругости, возникающая при деформации тела, пропорциональна удлинению тела в сторону, противоположную направлению перемещения частиц тела при деформации. Коэффициент k называется жесткостью тела, и зависит от формы и материала тела. Выражается в ньютонах на метр. Силы упругости обусловлены электромагнитными взаимодействиями.

12. Силы трения, коэффициент трения скольжения. Вязкое трение (???)

Сила, возникающая на границе взаимодействия тел при отсутствии относительного движения тел, называется силой трения покоя. Сила трения покоя равна по модулю внешней силе, направленной по касательной к поверхности соприкосновения тел и противоположна ей по направлению. При равномерном движении одного тела по поверхности другого под воздействием внешней силы на тело действует сила, равная по модулю движущей силе и противоположная по направлению. Эта сила называется силой трения скольжения. Вектор силы трения скольжения направлен против вектора скорости, поэтому эта сила всегда приводит к уменьшению относительной скорости тела. Силы трения также, как и сила упругости, имеют электромагнитную природу, и возникают за счет взаимодействия между электрическими зарядами атомов соприкасающихся тел. Экспериментально установлено, что максимальное значение модуля силы трения покоя пропорционально силе давления. Также примерно равны максимальное значение силы трения покоя и сила трения скольжения, как примерно равны и коэффициенты пропорциональности между силами трения и давлением тела на поверхность.

13. Гравитационные силы . Закон всемирного тяготения. Сила тяжести. Вес тела.

Из того, что тела независимо от своей массы падают с одинаковым ускорением, следует, что сила, действующая на них, пропорциональна массе тела. Эта сила притяжения, действующая на все тела со стороны Земли, называется силой тяжести. Сила тяжести действует на любом расстоянии между телами. Все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс и обратно пропорциональна квадрату расстояния между ними. Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей центры масс тел. , G – Гравитационная постоянная, равна . Весом тела называется сила, с которой тело вследствие силы тяжести действует на опору или растягивает подвес. Вес тела равен по модулю и противоположен по направлению силе упругости опоры по третьему закону Ньютона. По второму закону Ньютона если на тело более не действует ни одна сила, то сила тяжести тела уравновешивается силой упругости. Вследствие этого вес тела на неподвижной или равномерно движущейся горизонтальной опоре равен силе тяжести. Если опора движется с ускорением, то по второму закону Ньютона , откуда выводится . Это означает, что вес тела, направление ускорения которого совпадает с направлением ускорения свободного падения, меньше веса покоящегося тела.

14. Движение тела под действием силы тяжести по вертикали. Движение искусственных спутников. Невесомость. Первая космическая скорость.

При бросании тела параллельно земной поверхности дальность полета будет тем большей, чем больше начальная скорость. При больших значениях скорости также необходимо принимать в расчет шарообразность земли, что отражается в изменении направления вектора силы тяжести. При некотором значении скорости тело может двигаться вокруг Земли под действием силы всемирного тяготения. Эту скорость, называемую первой космической, можно определить из уравнения движения тела по окружности. С другой стороны, из второго закона Ньютона и закона всемирного тяготения следует, что. Таким образом, на расстоянии R от центра небесного тела массой М первая космическая скорость равна. При изменении скорости тела меняется форма его орбиты с окружности на эллипс. При достижении второй космической скорости, равной орбита становится параболической.

15. Импульс тела. Закон сохранения импульса. Реактивное движение.

По второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение его скорости может происходить только при взаимодействии с другими телам. Если на тело массой m в течение времени t действует сила и скорость его движения изменяется от до , то ускорение тела равно . На основании второго закона Ньютона для силы можно записать . Физическая величина, равная произведению силы на время ее действия, называется импульсом силы. Импульс силы показывает, что существует величина, одинаково изменяющаяся у всех тел под воздействием одинаковых сил, если время действия силы одинаково. Эта величина, равная произведению массы тела на скорость его движения, называется импульсом тела. Изменение импульса тела равно импульсу силы, вызвавшей это изменение. Возьмем два тела, массами и , движущиеся со скоростями и . По третьему закону Ньютона силы, действующие на тела при их взаимодействии, равны по модулю и противоположны по направлению, т.е. их можно обозначить как и . Для изменений импульсов при взаимодействии можно записать . Из этих выражений получим, что , то есть векторная сумма импульсов двух тел до взаимодействия равна векторной сумме импульсов после взаимодействия. В более общем виде закон сохранения импульса звучит так: Если, то .

16. Механическая работа. Мощность. Кинетическая и потенциальная энергия.

Работой А постоянной силы называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла между векторами и. . Работа является скалярной величиной и может иметь отрицательное значение, если угол между векторами перемещения и силы более . Единица работы называется джоулем, 1 джоуль равен работе, совершаемой силой в 1 ньютон при перемещении точки ее приложения на 1 метр. Мощность – физическая величина, равная отношению работы к промежутку времени, в течение которого эта работа совершалась. . Единима мощности называется ваттом, 1 ватт равен мощности, при которой работа в 1 джоуль совершается за 1 секунду. Допустим, что на тело массой m действует сила (которая может вообще говоря быть равнодействующей нескольких сил), под действием которой тело перемещается на в направлении вектора . Модуль силы по второму закону Ньютона равен ma , а модуль вектора перемещения связан с ускорение и начальной и конечной скоростями как. Отсюда для работы получается формула . Физическая величина, равная половине произведения массы тела на квадрат скорости называется кинетической энергией. Работа равнодействующей сил, приложенных к телу, равна изменению кинетической энергии. Физическая величина, равная произведению массы тела на модуль ускорения свободного падения и высоту, на которую поднято тело над поверхностью с нулевым потенциалом, называют потенциальной энергией тела. Изменение потенциальной энергии характеризует работу силы тяжести по перемещении тела. Эта работа равна изменению потенциальной энергии, взятому с противоположным знаком. Тело находящееся ниже поверхности земли, имеет отрицательную потенциальную энергию. Потенциальную энергию имеют не только поднятые тела. Рассмотрим работу, совершаемую силой упругости при деформации пружины. Силу упругости прямо пропорциональна деформации, и ее среднее значение будет равно, работа равна произведению силы на деформацию, или же . Физическая величина, равная половине произведения жесткости тела на квадрат деформации называется потенциальной энергией деформированного тела. Важной характеристикой потенциальной энергии является то, что тело не может обладать ею, не взаимодействуя с другими телами.

17.Законы сохранения энергии в механике.

Потенциальная энергия характеризует взаимодействующие тела, кинетическая – движущиеся. И та, и другая возникают в результате взаимодействия тел. Если несколько тел взаимодействую между собой только силами тяготения и силами упругости, и никакие внешние силы на них не действуют (или же их равнодействующая равна нулю), то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии, взятой с противоположным знаком. В то же время, по теореме о кинетической энергии (изменение кинетической энергии тела равно работе внешних сил) работа тех же сил равна изменению кинетической энергии. . Из этого равенства следует, что сумма кинетической и потенциальной энергий тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и упругости, остается постоянной. Сумма кинетической и потенциальной энергий тел называется полной механической энергией. Полная механическая энергия замкнутой системы тел, взаимодействующих между собой силами тяготения и упругости, остается неизменной. Работа сил тяготения и упругости равна, с одной стороны, увеличению кинетической энергии, а с другой – уменьшению потенциальной, то есть работа равна энергии, превратившейся из одного вида в другой.

18. Простые механизмы (наклонная плоскость, рычаг, блок) их применение.

Наклонная плоскость применяется для того, чтобы тело большой массы можно было переместить действием силы, значительно меньшей веса тела. Если угол наклонной плоскости равен a , то для перемещения тела вдоль плоскости необходимо применить силу, равную . Отношение этой силы к весу тела при пренебрежении силой трения равно синусу угла наклона плоскости. Но при выигрыше в силе нет выигрыша в работе, т.к. путь увеличивается в раз. Этот результат является следствием закона сохранения энергии, так как работа силы тяжести не зависит от траектории подъема тела.

Рычаг находится в равновесии, если момент сил, вращающий его по часовой стрелке равен моменту ил, вращающих рычаг против часовой стрелки. Если направления векторов сил, приложенных к рычагу, перпендикулярны кратчайшим прямым, соединяющим точки приложения сил и ось вращения, то условия равновесия принимает вид. Если , то рычаг обеспечивает выигрыш в силе . Выигрыш в силе не дает выигрыша в работе, т.к. при повороте на угол a сила совершает работу, а сила совершает работу . Т.к. по условию , то .

Блок позволяет изменять направление действия силы. Плечи сил, приложенных к разным точкам неподвижного блока, одинаковы, и поэтому выигрыша в силе неподвижный блок не дает. При подъеме груза с помощью подвижного блока получается выигрыш в силе в два раза, т.к. плечо силы тяжести вдвое меньше плеча силы натяжения троса. Но при вытягивании троса на длину l груз поднимается на высоту l/2 , следовательно, неподвижный блок также не дает выигрыша в работе.

19. Давление. Закон Паскаля для жидкостей и газов.

Физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности к площади этой поверхности, называется давлением. Единица давления – паскаль, равный давлению, производимому силой в 1 ньютон на площадь в 1 квадратный метр. Все жидкости и газы передают производимое на них давление во все стороны.

20. Сообщающиеся сосуды. Гидравлический пресс. Атмосферное давление. Уравнение Бернулли.

В цилиндрическом сосуде сила давления на дно сосуда равна весу столба жидкости. Давление на дно сосуда равно, откуда давление на глубине h равно . На стенки сосуда действует такое же давление. Равенство давлений жидкости на одной и той же высоте приводит к тому, что в сообщающихся сосудах любой формы свободные поверхности покоящейся однородной жидкости находятся на одном уровне (в случае пренебрежимо малости капиллярных сил). В случае неоднородной жидкости высота столба более плотной жидкости будет меньше высоты менее плотной. На основе закон Паскаля работает гидравлическая машина. Она состоит из двух сообщающихся сосудов, закрытых поршнями разных площадей. Давление, производимое внешней силой на один поршень, передается по закону Паскаля на второй поршень. . Гидравлическая машина дает выигрыш в силе во столько раз, во сколько площадь ее большого поршня больше площади малого.

При стационарном движении несжимаемой жидкости справедливо уравнение неразрывности . Для идеальной жидкости, в которой можно пренебречь вязкостью (т.е. трением между ее частицами) математическим выражением закон сохранения энергии является уравнение Бернулли .

21. Опыт Торричелли.

Изменение атмосферного давления с высотой.

Под действием силы тяжести верхние слои атмосферы давят на нижележащие. Это давление согласно закону Паскаля передается по всем направлениям. Наибольшее значение это давление имеет у поверхности Земли, и обусловлено весом столба воздуха от поверхности до границы атмосферы. При увеличении высоты уменьшается масса слоев атмосферы, давящих на поверхность, следовательно, атмосферное давление с высотой понижается. На уровне моря атмосферное давление равно 101 кПа. Такое давление оказывает столб ртути высотой 760 мм. Если в жидкую ртуть опустить трубку, в которой создан вакуум, то под действием атмосферного давления ртуть поднимется в ней на такую высоту, при которой давление столба жидкости станет равным внешнему атмосферному давлению на открытую поверхность ртути. При изменении атмосферного давления высота столба жидкости в трубке также изменится.

22. Архимедова сила дня жидкостей и газов. Условия плавания тел.

Зависимость давления в жидкости и газе от глубины приводит к возникновению выталкивающей силы, действующей на любое тело, погруженное в жидкость или газ. Эту силу называют архимедовой силой. Если в жидкость погрузить тело, то давления на боковые стенки сосуда уравновешиваются друг другом, а равнодействующая давлений снизу и сверху является архимедовой силой. , т.е. силы, выталкивающая погруженное в жидкость (газ) тело, равна весу жидкости (газа), вытесненной телом. Архимедова сила направлена противоположно силе тяжести, поэтому при взвешивании в жидкости вес тела меньше, чем в вакууме. На тело, находящееся в жидкости, действует сила тяжести и архимедова сила. Если сила тяжести по модулю больше – тело тонет, меньше – всплывает, равны – может находиться в равновесии н любой глубине. Эти отношения сил равны отношениям плотностей тела и жидкости(газа).

23. Основные положения молекулярно-кинетической теории и их опытное обоснование. Броуновское движение. Масса и размер молекул.

Молекулярно-кинетической теорией называется учение о строении и свойствах вещества, использующее представление о существовании атомов и молекул как наименьших частиц вещества. Основные положения МКТ: вещество состоит из атомов и молекул, эти частиц хаотически движется, частицы взаимодействую друг с другом. Движение атомов и молекул и их взаимодействие подчиняется законам механики. Во взаимодействии молекул при их сближении сначала преобладают силы притяжения. На некотором расстоянии между ними возникают силы отталкивания, превосходящие по модулю силы притяжения. Молекулы и атомы совершают беспорядочные колебания относительно положений, где силы притяжения и отталкивания уравновешивают друг друга. В жидкости молекулы не только колеблются, но и перескакивают из одного положения равновесия в другое (текучесть). В газах расстояния между атомами значительно больше размеров молекул (сжимаемость и расширяемость). Р.Броун в начале 19 век обнаружил, что в жидкости беспорядочно движутся твердые частицы. Это явление могла объяснить только МКТ,. Беспорядочно движущиеся молекулы жидкости или газа сталкиваются с твердой частицей и изменяют направление и модуль скорости ее движения (при этом, разумеется, изменяя и свое направление и скорость). Чем меньше размеры частицы тем более заметными становятся изменение импульса. Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорциональным количеству частиц. Единица количества вещества называется моль. Моль равен количеству вещества, содержащей столько атомов, сколько содержится их в 0.012 кг углерода 12 С. Отношение числа молекул к количеству вещества называют постоянной Авогадро: . Количество вещества можно найти как отношение числа молекул к постоянной Авогадро. Молярной массой M называется величина, равная отношению массы вещества m к количеству вещества . Молярная масса выражается в килограммах на моль. Молярную массу можно выразить через массу молекулы m 0 : .

24. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа.

Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. В этой модели предполагается следующее: молекулы газа обладают пренебрежимо малыми размера по сравнению с объемом сосуда, между молекулами не действуют силы притяжения, при соударении друг с другом и стенками сосуда действуют силы отталкивания. Качественное объяснение явления давления газа заключается в том, что молекулы идеального газа при столкновениях со стенками сосуда взаимодействуют с ними как упругие тела. При столкновении молекулы со стенкой сосуда проекция вектора скорости на ось, перпендикулярную стенке, меняется на противоположную. Поэтому при столкновении проекция скорости меняется от –mv x до mv x , и изменение импульса равно . Во время столкновения молекула действует на стенку с силой, равной по третьему закону Ньютона силе, противоположной по направлению. Молекул очень много, и среднее значение геометрической суммы сил, действующих со стороны отдельных молекул, и образует силу давления газа на стенки сосуда. Давление газа равно отношению модуля силы давления к площади стенки сосуда: p=F/S . Предположим, что газ находится в кубическом сосуде. Импульс одной молекулы составляет 2mv , одна молекула воздействует на стенку в среднем с силой 2mv/D t . Время D t движения от одной стенки сосуда к другой равно 2l/v , следовательно, . Сила давления на стенку сосуда всех молекул пропорциональна их числу, т.е. . Из-за полной хаотичности движения молекул движение их по каждому из направлений равновероятно и равно 1/3 от общего числа молекул. Таким образом, . Так как давление производится на грань куба площадью l 2 , то давление будет равно. Это уравнение называется основным уравнением молекулярно-кинетической теории. Обозначив за среднюю кинетическую энергию молекул, получим.

25. Температура, ее измерение. Абсолютная температурная шкала. Скорость молекул газа .

Основное уравнение МКТ для идеального газа устанавливает связь между микро- и макроскопическими параметрами. При контакте двух тел изменяются их макроскопические параметры. Когда это изменение прекратилось, говорят, что наступило тепловое равновесие. Физический параметр, одинаковый во всех частях системы тел, находящихся в состоянии теплового равновесия, называют температурой тела. Опыты показали, что для любого газа, находящегося в состоянии теплового равновесия, отношение произведения давления на объем к количеству молекул есть одинаково . Это позволяет принять величину в качестве меры температуры. Так как n=N/V , то с учетом основного уравнения МКТ, следовательно, величина равна двум третям средней кинетической энергии молекул. , где k – коэффициент пропорциональности, зависящий от шкалы. В левой части этого уравнения параметры неотрицательны. Отсюда – температура газа при котором его давление при постоянном объеме равно нулю, называют абсолютным нулем температуры. Значение этого коэффициента можно найти по двум известным состояниям вещества с известными давлением, объемом, числом молекул температуре. . Коэффициент k , называемый постоянной Больцмана, равен . Из уравнений связи температуры и средней кинетической энергии следует, т.е. средняя кинетическая энергия хаотического движения молекул пропорциональна абсолютной температуре. , . Это уравнение показывает, что при одинаковых значениях температуры и концентрации молекул давление любых газов одинаково.

26. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изотермический, изохорный и изобарный процессы.

Используя зависимость давления от концентрации и температуры, можно найти связь между макроскопическими параметрами газа – объемом, давлением и температурой. . Это уравнение называют уравнением состояния идеального газа (уравнение Менделеева-Клапейрона).

Изотермическим процессом называется процесс, протекающий при постоянной температуре. Из уравнения состояния идеального газа следует, что при постоянной температуре, массе и составе газа произведение давления на объем должно оставаться постоянным. Графиком изотермы (кривой изотермического процесса) является гипербола. Уравнение называют законом Бойля-Мариотта.

Изохорным процессом называется процесс, протекающий при неизменном объеме, массе и составе газа. При этих условиях, где – температурный коэффициент давления газа. Это уравнение называется законом Шарля. График уравнения изохорного процесса называется изохорой, и представляет из себя прямую, проходящую через начало координат.

Изобарным процессом называется процесс, протекающий при неизменном давлении, массе и составе газа. Аналогичным образом как и для изохорного процесса можно получить уравнение для изобарного процесса . Уравнение, описывающее этот процесс, называется законом Гей-Люссака. График уравнения изобарного процесса называется изобарой, и представляет из себя прямую, проходящую через начало координат.

27. Внутренняя энергия. Работа в термодинамике.

Если потенциальная энергия взаимодействия молекул равна нулю, то внутренняя энергия равна сумме кинетических энергий движения всех молекул газа . Следовательно, при изменении температуры изменяется и внутренняя энергия газа. Подставив в уравнение для энергии уравнение состояния идеального газа, получим, что внутренняя энергия прямо пропорциональная произведению давления газа на объем. . Внутренняя энергия тела может изменяться только при взаимодействии с другими телам. При механическом взаимодействии тел (макроскопическом взаимодействии) мерой передаваемой энергии является работа А . При теплообмене (микроскопическом взаимодействии) мерой передаваемой энергии является количество теплоты Q . В неизолированной термодинамической системе изменение внутренней энергии D U равно сумме переданного количества теплоты Q и работы внешних сил А . Вместо работы А , совершаемой внешними силами, удобнее рассматривать работу А` , совершаемую системой над внешними телами. А=–А` . Тогда первый закон термодинамики выражается как, или же. Это означает, что любая машина может совершать работу над внешними телами только за счет получения извне количества теплоты Q или уменьшения внутренней энергии D U . Этот закон исключает создание вечного двигателя первого рода.

28. Количество теплоты. Удельная теплоемкость вещества. Закон сохранения энергии в тепловых процессах (первый закон термодинамики).

Процесс передачи теплоты от одного тела к другому без совершения работы называют теплообменом. Энергия, переданная телу в результате теплообмена, называется количеством теплоты. Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики. Внутренняя энергия тела пропорциональна массе тела и его температуре, следовательно . Величина с называется удельной теплоемкостью, единица – . Удельная теплоемкость показывает, какое количество теплоты необходимо передать для нагревания 1 кг вещества на 1 градус. Удельная теплоемкость не является однозначной характеристикой, и зависит от работы, совершаемой телом при теплопередаче.

При осуществлении теплообмена между двумя телами в условиях равенства нулю работы внешних сил и в тепловой изоляции от других тел, по закону сохранения энергии . Если изменение внутренней энергии не сопровождается работой, то , или же , откуда . Это уравнение называется уравнением теплового баланса.

29. Применение первого закона термодинамики к изопроцессам. Адиабатный процесс. Необратимость тепловых процессов.

Одним из основных процессов, совершающих работу в большинстве машин, является процесс расширения газа с совершением работы. Если при изобарном расширении газа от объема V 1 до объема V 2 перемещение поршня цилиндра составило l , то работа A совершенная газом равна , или же . Если сравнить площади под изобарой и изотермой, являющиеся работами, можно сделать вывод, что при одинаковом расширении газа при одинаковом начальном давлении в случае изотермического процесса будет совершено меньше количество работы. Кроме изобарного, изохорного и изотермического процессов существует т.н. адиабатный процесс. Адиабатным называется процесс, происходящий при условии отсутствия теплообмена. Близким к адиабатному может считаться процесс быстрого расширения или сжатия газа. При этом процессе работа совершается за счет изменения внутренней энергии, т.е. , поэтому при адиабатном процессе температура понижается. Поскольку при адиабатном сжатии газа температура газа повышается, то давление газа с уменьшением объема растет быстрее, чем при изотермическом процессе.

Процессы теплопередачи самопроизвольно осуществляются только в одном направлении. Всегда передача тепла происходит к более холодному телу. Второй закон термодинамики гласит, что неосуществим термодинамический процесс, в результате которого происходила бы передача тепла от одного тела к другому, более горячему, без каких-либо других изменений. Этот закон исключает создание вечного двигателя второго рода.

30. Принцип действия тепловых двигателей. КПД теплового двигателя.

Обычно в тепловых машинах работа совершается расширяющимся газом. Газ, совершающий работу при расширении, называется рабочим телом. Расширение газа происходит в результате повышения его температуры и давления при нагревании. Устройство, от которого рабочее тело получает количество теплоты Q называется нагревателем. Устройство, которому машина отдает тепло после совершения рабочего хода, называется холодильником. Сначала изохорически растет давление, изобарически расширяется, изохорически охлаждается, изобарически сжимается. <рисунок с подъемником>. В результате совершения рабочего цикла газ возвращается в начальное состояние, его внутренняя энергия принимает исходное значение. Это значит, что . Согласно первому закону термодинамики, . Работа, совершаемая телом за цикл, равна Q. Количество теплоты, полученное телом за цикл, равно разности полученного от нагревателя и отданного холодильнику. Следовательно, . Коэффициентом полезного действия машины называется отношение полезно использованной к затраченной энергии .

31. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха.

Неравномерное распределение кинетической энергии теплового движения приводит к тому. Что при любой температуре кинетическая энергия некоторой части молекул может превысить потенциальную энергию связи с остальными. Испарением называется процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы. Испарение сопровождается охлаждением, т.к. более быстрые молекулы покидают жидкость. Испарение жидкости в закрытом сосуда при неизменной температуре приводит к увеличению концентрации молекул в газообразном состоянии. Через некоторое время наступает равновесие между количеством испаряющихся молекул и возвращающихся в жидкость. Газообразное вещество, находящееся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Пар, находящийся при давлении ниже давления насыщенного пара, называется ненасыщенным. Давление насыщенного пара не зависит при постоянной температуре от объема (из ). При постоянной концентрации молекул давление насыщенного пара растет быстрее, чем давление идеального газа, т.к. под действием температуры количество молекул увеличивается. Отношение давления водяного пара при данной температуре к давлению насыщенного пара при той же температуре, выраженное в процентах, называется относительной влажностью воздуха . Чем ниже температура, тем меньше давление насыщенного пара, таким образом при охлаждении до некоторой температуры пар становится насыщенным. Эта температура называется точкой росы t p .

32. Кристаллические и аморфные тела. Механические свойства твердых тел. Упругие деформации.

Аморфными называются тела, физические свойства которых одинаковы по всем направлениям (изотропные тела). Изотропность физических свойств объясняется хаотичностью расположения молекул. Твердые тела, в которых молекулы упорядочены, называются кристаллами. Физические свойства кристаллических тел неодинаковы в различных направлениях (анизотропные тела). Анизотропия свойств кристаллов объясняется тем, что при упорядоченной структуре силы взаимодействия неодинаковы по различным направлениям. Внешнее механическое воздействие на тело вызывает смещение атомов из положения равновесия, что приводит к изменению формы и объема тела – деформации. Деформацию можно охарактеризовать абсолютным удлинением, равным разности длин до и после деформации, или относительным удлинением . При деформации тела возникают силы упругости. Физическая величина, равная отношению модуля силы упругости к площади сечения тела называется механическим напряжением . При малых деформациях напряжение прямо пропорционально относительному удлинению . Коэффициент пропорциональности Е в уравнении называется модулем упругости (модулем Юнга). Модуль упругости является постоянной для данного материала , откуда . Потенциальная энергия деформированного тела равна работе, затраченной на растяжение или сжатие. Отсюда .

Закон Гука выполняется только при небольших деформациях. Максимальное напряжение, при котором он еще выполняется, называется пределом пропорциональности. За этим пределом напряжение перестает расти пропорционально. До некоторого уровня напряжение деформированное тело восстановит свои размеры после снятия нагрузки. Эта точка называется пределом упругости тела. При превышении предела упругости начинается пластическая деформация, при которой тело не восстанавливает свою прежнюю форму. В области пластической деформации напряжение почти не увеличивается. Это явление называется текучестью материала. За пределом текучести напряжение повышается до точки, называемой пределом прочности, после которой напряжение уменьшается вплоть до разрушения тела.

33. Свойства жидкостей. Поверхностное натяжение. Капиллярные явления.

Возможность свободного перемещения молекул в жидкости обуславливает текучесть жидкости. Тело в жидком состоянии не имеет постоянной формы. Форма жидкости определяется формой сосуда и силами поверхностного натяжения. Внутри жидкости силы притяжения молекул компенсируются, а у поверхности – нет. Любая молекула, находящаяся у поверхности, притягивается молекулами внутри жидкости. Под действием этих сил молекулы в поверхность втягиваются внутрь до тех пор, пока свободная поверхность не станет минимальной из всех возможных. Т.к. минимальную поверхность при данном объеме имеет шар, то при малом действии других сил поверхность принимает форму сферического сегмента. Поверхность жидкости у края сосуда называется мениском. Явление смачивания характеризуется краевым углом между поверхностью и мениском в точке пересечения. Величина силы поверхностного натяжения на участке длиной D l равна . Искривление поверхности создает избыточное давление на жидкость, равное при известном краевом угле и радиусе . Коэффициент s называется коэффициентом поверхностного натяжения. Капилляром называется трубка с малым внутренним диаметром. При полном смачивании сила поверхностного натяжение направлена вдоль поверхности тела. В этом случае подъем жидкости по капилляру продолжается под действием этой силы до тех пор, пока сила тяжести не уравновесит силу поверхностного натяжения , т.к. , то.

34. Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.

Ни механика, ни МКТ не в состоянии объяснить природу сил, связывающих атомы. Законы взаимодействия атомов и молекул можно объяснить на основе представления об электрических зарядах. <Опыт с натиранием ручки и притяжением бумажки> Взаимодействие тел, обнаруживаемое в этом опыте называется электромагнитным, и обуславливается электрическими зарядами. Способность зарядов притягиваться и отталкиваться объясняется предположением о существовании двух видов зарядов – положительному и отрицательному. Тела, заряженные одинаковым зарядом, отталкиваются, разным – притягиваются. Единицей заряда является кулон – заряд, проходящий через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер. В замкнутой системе, в которую не входят извне электрические заряды и из которого не выходят электрические заряды при любых взаимодействиях алгебраическая сумма зарядов всех тел постоянна. Основной закон электростатики, он же закон Кулона, гласит, что модуль силы взаимодействия между двумя зарядами прямо пропорционален произведению модулей зарядов и обратно пропорционален квадрату расстояния между ними . Сила направлена вдоль прямой, соединяющей заряженные тела. Является силой отталкивания или притяжение, в зависимости от знака зарядов. Постоянная k в выражении закона Кулона равна . Вместо этого коэффициента используют т.н. электрическую постоянную, связанную с коэффициентом k выражением , откуда . Взаимодействие неподвижных электрических зарядов называется электростатическим.

35. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.

Вокруг каждого заряда на основании теории близкодействия существует электрическое поле. Электрическое поле – материальный объект, постоянно существует в пространстве и способно действовать на другие заряды. Электрическое поле распространяется в пространстве со скоростью света. Физическая величина, равная отношению силы, с которой электрическое поле действует на пробный заряд (точечный положительный малый заряд, не влияющий на конфигурацию поля), к значению этого заряда, называется напряженностью электрического поля. Используя закон Кулона возможно получить формулу для напряженности поля, создаваемого зарядом q на расстоянии r от заряда . Напряженность поля не зависит от заряда, на который оно действует. Если на заряд q действуют одновременно электрические поля нескольких зарядов, то результирующая сила оказывается равной геометрической сумме сил, действующих со стороны каждого поля в отдельности. Это называется принципом суперпозиции электрических полей . Линией напряженности электрического поля называется линия, касательная к которой в каждой точке совпадает с вектором напряженности. Линии напряженности начинаются на положительных зарядах и оканчиваются на отрицательных, или же уходят в бесконечность. Электрическое поле, напряженность которого одинакова по всем в любой точке пространства, называется однородным электрическим полем. Приблизительно однородным можно считать поле между двумя параллельными разноименно заряженными металлическими пластинками. При равномерном распределении заряда q по поверхности площади S поверхностная плотность заряда равна . Для бесконечной плоскости с поверхностной плотностью заряда s напряженность поля одинакова во всех точках пространства и равная .

36. Работа электростатического поля при перемещении заряда. Разность потенциалов.

При перемещении заряда электрическим полем на расстояние совершенная работа равна . Как и в случае с работой силы тяжести, работа кулоновской силы не зависит от траектории перемещения заряда. При изменении направления вектора перемещения на 180 0 работа сил поля меняет знак на противоположный. Таким образом, работа сил электростатического поля при перемещении заряда по замкнутому контуру равна нулю. Поле, работа сил которого по замкнутой траектории равна нулю, называется потенциальным полем.

Точно так же, как тело массой m в поле силы тяжести обладает потенциально энергией, пропорциональной массе тела, электрический заряд в электростатическом поле обладает потенциальной энергией W p , пропорциональной заряду. Работа сил электростатического поля равна изменению потенциальной энергии заряда, взятому с противоположным знаком. В одной точке электростатического поля разные заряды могут обладать различной потенциальной энергией. Но отношение потенциальной энергии к заряду для данной точки есть величина постоянная. Эта физическая величина называется потенциалом электрического поля , откуда потенциальная энергия заряда равна произведению потенциала в данной точке на заряд. Потенциал – скалярная величина, потенциал нескольких полей равен сумме потенциалов этих полей. Мерой изменения энергии при взаимодействии тел является работа. При перемещении заряда работа сил электростатического поля равна изменению энергии с противоположным знаком, поэтому . Т.к. работа зависит от разности потенциалов и не зависит от траектории между ними, то разность потенциалов можно считать энергетической характеристикой электростатического поля. Если потенциал на бесконечном расстоянии от заряда принять равным нулю, то на расстоянии r от заряда он определяется по формуле .

Отношение работы, совершаемой любым электрическим полем при перемещении положительного заряда из одной точки поля в другую, к значению заряда называется напряжением между этими точкам , откуда работа . В электростатическом поле напряжение между двумя любыми точками равно разности потенциалов между этими точками . Единица напряжения (и разности потенциалов) называется вольтом, . 1 вольт равен такому напряжению, при котором поле совершает работу в 1 джоуль по перемещению заряда в 1 кулон. С одной стороны, работа по перемещению заряда равна произведению силы на перемещение. С другой стороны, она может быть найдена по известному напряжению между участками пути. Отсюда. Единицей напряженности электрического поля является вольт на метр (в/м ).

Конденсатор – система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Между пластинами напряженность поля равна удвоенной напряженности каждой из пластин, вне пластин она равна нулю. Физическая величина, равная отношению заряда одной из пластин к напряжению между обкладками называется электроемкостью конденсатора . Единица электроемкости – фарад, емкостью 1 фарад обладает конденсатор, между обкладками которого напряжение равно 1 вольту при сообщении обкладкам заряда по 1 кулону. Напряженность поля между пластинами твердого конденсатора равна сумме напряженность ей пластин. , а т.к. для однородного поля выполняется , то , т.е. электроемкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними. При введении между пластинами диэлектрика, его электроемкость повышается в e раз, где e – диэлектрическая проницаемость вводимого материала.

38. Диэлектрическая проницаемость . Энергия электрического поля.

Диэлектрическая проницаемость это физическая величина, характеризующая отношение модуля напряженности электрического поля в вакууме к модулю электрического поля в однородном диэлектрике. Работа электрического поля равна, но при зарядке конденсатора его напряжение вырастает от 0 до U , поэтому. Следовательно, и потенциальная энергия конденсатора равна .

39. Электрический ток. Сила тока. Условия существования электрического тока.

Электрическим током называется упорядоченное движение электрических зарядов. За направление тока принято движение положительных зарядов. Электрические заряды могут упорядоченно двигаться под действием электрического поля. Поэтому достаточным условием существования тока является наличие поля и свободных носителей заряда. Электрическое поле может быть создано двумя соединенными разноименно заряженными телами. Отношение заряда D q , переносимого через поперечное сечение проводника за интервал времени D t к этому интервалу называется силой тока . Если сила тока со временем не изменяется, то ток называется постоянным. Чтобы ток существовал проводнике в течение длительного времени, необходимо, чтобы условия, вызывающие ток, были неизменными. <схема с один резистором и батареей>. Силы, вызывающие перемещение заряда внутри источника тока, называются сторонним силами. В гальваническом элементе (а любая батарейка – г.э.???) ими являются силы химической реакции, в машине постоянного тока – сила Лоренца.

40. Закон Ома для участка цепи. Сопротивление проводников. Зависимость сопротивления проводников от температуры. Сверхпроводимость. Последовательное и параллельное соединение проводников.

Отношение напряжения между концами участка электрической цепи к силе тока есть величина постоянная, и называется сопротивлением . Единица сопротивления 0 ом, сопротивлением в 1 ом обладает такой участок цепи, в котором при силе тока 1 ампер напряжение равно 1 вольту. Сопротивление прямо пропорционально длине и обратно пропорционально площади поперечного сечения , где r – удельное электрическое сопротивление, величина постоянная для данного вещества при данных условиях. При нагревании удельное сопротивление металлов увеличивается по линейному закону , где r 0 – удельное сопротивление при 0 0 С, a – температурный коэффициент сопротивления, особый для каждого металла. При близких к абсолютному нулю температурах сопротивление веществ резко падает до нуля. Это явление называется сверхпроводимостью. Прохождение тока в сверхпроводящих материалах происходит без потерь на нагревание проводника.

Законом Ома для участка цепи называют уравнение . При последовательном соединении проводников сила тока одинакова во всех проводниках, а напряжение на концах цепи равно сумме напряжений на всех последовательно включенных проводниках. . При последовательном соединении проводников общее сопротивление равно сумме сопротивлений составляющих. При параллельном соединении напряжение на концах каждого участка цепи одинаково, а сила тока разветвляется на отдельные части. Отсюда . При параллельном подключении проводников величина, обратная общему сопротивлению равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников.

41. Работа и мощность тока. Электродвижущая сила. Закон Ома для полной цепи.

Работу сил электрического поля, создающего электрический ток, называют работой тока. Работа А тока на участке с сопротивлением R за время D t равна . Мощность электрического тока равна отношению работы ко времени совершения, т.е. . Работа выражается, как обычно, в джоулях, мощность – в ваттах. Если на участке цепи под действием электрического поля не совершается работа и не происходят химические реакции, то работа приводит к нагреванию проводника. При этом работа равна количеству теплоты, выделяемому проводником с током (Закон Джоуля-Ленца).

В электрической цепи работа совершается не только на внешнем участке, но и в батарее. Электрическое сопротивление источника тока называется внутренним сопротивлением r . На внутреннем участке цепи выделяется количество теплоты, равное . Полная работа сил электростатического поля при движении по замкнутому контуру равна нулю, поэтому вся работа оказывается совершенной за счет внешних сил, поддерживающих постоянное напряжение. Отношение работы внешних сил к переносимому заряду называется электродвижущей силой источника , где D q – переносимый заряд. Если в результате прохождения постоянного тока произошло только нагревание проводников, то по закону сохранения энергии , т.е. . Ила тока в электрической цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи.

42. Полупроводники. Электропроводимость полупроводников и ее зависимость от температуры. Собственная и примесная проводимость полупроводников.

Многие вещества не проводят ток так хорошо, как металлы, но в то же время не являются диэлектриками. Одним из отличий полупроводников – то, что при нагревании или освещении их удельное сопротивление не увеличивается, а уменьшается. Но главным их практически применимым свойством оказалась односторонняя проводимость. Вследствие неравномерного распределения энергии теплового движения в кристалле полупроводника некоторые атомы ионизируются. Освободившиеся электроны не могут быть захвачены окружающими атомами, т.к. их валентные связи насыщены. Эти свободные электроны могут перемещаться в металле, создавая электронный ток проводимости. В то же время, атом, с оболочки которого вырвался электрон, становится ионом. Этот ион нейтрализуется за счет захвата атома соседа. В результате такого хаотического перемещения возникает перемещение места с недостающим ионом, что внешне видно как перемещение положительного заряда. Это называется дырочным током проводимости. В идеальном полупроводниковом кристалле ток создается перемещением равного количества свободных электронов и дырок. Такой тип проводимости называется собственной проводимостью. При понижении температуры количество свободных электронов, пропорциональное средней энергии атомов, падает и полупроводник становится похож на диэлектрик. В полупроводник для улучшения проводимости иногда добавляются примеси, которые бывают донорные (увеличивают число электронов без увеличения числа дырок) и акцепторные (увеличивают число дырок без увеличения числа электронов). Полупроводники, где количество электронов превышает количество дырок, называются электронными полупроводниками, или полупроводниками n-типа. Полупроводники, где количество дырок превышает количество электронов, называются дырочными полупроводниками, или полупроводниками р-типа.

43. Полупроводниковый диод. Транзистор.

Полупроводниковый диод состоит из p-n перехода, т.е. из двух соединенных полупроводников разного типа проводимости. При соединении происходит диффузия электронов в р -полупроводник. Это приводит к появлению в электронном полупроводнике нескомпенсированных положительных ионов донорной примеси, а в дырочном – отрицательных ионов акцепторной примеси, захвативших продиффундировавшие электроны. Между двумя слоями возникает электрическое поле. Если на область с электронной проводимостью подать положительный заряд, а на область с дырочной – отрицательный, то запирающее поле усилится, сила тока резко понизится и почти не зависит от напряжения. Такой способ включения называется запирающим, а ток, текущий в диоде – обратным. Если на область с дырочной проводимостью подать положительный заряд, а на область с электронной – отрицательный, то запирающее поле ослабится, сила тока через диод в этом случае зависит только от сопротивления внешней цепи. Такой способ включения называется пропускным, а ток, текущий в диоде – прямым.

Транзистором, он же полупроводниковый триод, состоит из двух p-n (или n-p ) переходов. Средняя часть кристалла называется база, крайние – эмиттер и коллектор. Транзисторы, в которых база обладает дырочной проводимостью, называют транзисторами p-n-p перехода. Для приведения в действие транзистора p-n-p -типа на коллектор полают напряжение отрицательной полярности относительно эмиттера. Напряжение на базе при этом может быть как положительным, так и отрицательным. Т.к. дырок больше, то основной ток через переход будет составлять диффузионный поток дырок из р -области. Если на эмиттер подать небольшое прямое напряжение, то через него потечет дырочный ток, диффундирующих из р -области в n -область (базу). Но т.к. база узкая, то дырки пролетают через нее, ускоряясь полем, в коллектор. (???, что-то тут я недопонял…) . Транзистор способен распределять ток, тем самым его усиливая. Отношение изменения тока в цепи коллектора к изменению тока в цепи базы при прочих равных условиях величина постоянная, называемая интегральным коэффициентом передачи базового тока . Следовательно, изменяя ток в цепи базы, возможно получить изменения в токе цепи коллектора. (???)

44. Электрический ток в газах. Виды газовых разрядов и их применение. Понятие о плазме.

Газ под воздействием света или тепла может становиться проводником тока. Явление прохождения тока через газ при условии внешнего воздействия, называется несамостоятельным электрическим разрядом. Процесс возникновения ионов газа под воздействием температуры называется термической ионизацией. Возникновение ионов под воздействием светового излучения – фотоионизация. Газ, в котором значительная часть молекул ионизирована, называется плазмой. Температура плазмы достигает нескольких тысяч градусов. Электроны и ионы плазмы способны перемещаться под воздействием электрического поля. При увеличении напряженности поля в зависимости от давления и природы газа в нем возникает разряд без воздействия внешних ионизаторов. Это явление называется самостоятельным электрическим разрядом. Чтобы электрон при ударе об атом ионизовал его, необходимо, чтобы он обладал энергией не меньшей работы ионизации . Эту энергию электрон может приобрести под воздействием сил внешнего электрического поля в газе на пути свободного пробега, т.е. . Т.к. длина свободного пробега мала, самостоятельный разряд возможен только при высокой напряженности поля. При низком давлении газа образуется тлеющий разряд, что объясняется повышением проводимости газа при разрежении (увеличивается путь свободного пробега). Если сила тока в самостоятельном разряде очень велика, то удары электронов могут вызвать нагревание катода и анода. С поверхности катода при высокой температуре происходит эмиссия электронов, поддерживающая разряд в газе. Этот вид разряда называется дуговым.

45. Электрический ток в вакууме. Термоэлектронная эмиссия. Электронно-лучевая трубка.

В вакууме нет носителей свободного заряда, поэтому без внешнего влияния ток в вакууме отсутствует. Возникнуть он может в случае, если один из электродов нагреть до высокой температуры. Нагретый катод испускает со своей поверхности электроны. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией. Простейшим прибором, использующим термоэлектронную эмиссию, является электровакуумный диод. Анод состоит из металлической пластины, катод – из тонкой свернутой спиралью проволоки. Вокруг катода при его нагревании создается электронное облако. Если подключить катод к положительному выводу батареи, а анод – к отрицательному, то поле внутри диода будет смещать электроны к катоду, и тока не будет. Если же подключить наоборот – анод к плюсу, а катод к минусу – то электрическое поле будет перемещать электроны по направлению к аноду. Этим объясняется свойство односторонней проводимости диода. Потоком движущихся от катода к аноду электронов можно управлять с помощью электромагнитного поля. Для этого диод модифицируется, и между анодом и катодом добавляется сетка. Получившийся прибор называется триодом. Если на сетку подать отрицательный потенциал, то поле между сеткой и катодом будет препятствовать движению электрона. Если подать положительный – то поле будет препятствовать движению электронов. Испускаемые катодом электроны можно с помощью электрических полей разогнать до высоких скоростей. Способность электронных пучков отклоняться под действием электромагнитных полей используется в ЭЛТ.

46. Магнитное взаимодействие токов. Магнитное поле. Сила, действующая на проводник с током в магнитном поле. Индукция магнитного поля.

Если через проводники пропускают ток одного направления, то они притягиваются, а если равного – то отталкиваются. Следовательно, между проводниками есть некое взаимодействие, которое нельзя объяснить наличием электрического поля, т.к. в целом проводники электронейтральны. Магнитное поле создается движущимися электрическими зарядами и действует только на движущиеся заряды. Магнитное поле является особым видом материи и непрерывно в пространстве. Прохождение электрического ток по проводнику сопровождается порождением магнитного поля независимо от среды. Магнитное взаимодействие проводников используется для определения величины силы тока. 1 ампер – сила тока, проходящего по двум параллельным проводникам Ґ длины, и малого поперечного сечения, расположенным на расстоянии 1 метра друг от друга, при которой магнитный поток вызывает в низ силу взаимодействия, равную на каждый метр длины. Сила, с которой магнитное поле действует на проводник с током, называется силой Ампера. Для характеристики способности магнитного поля оказывать воздействие на проводник с током существует величина, называемая магнитной индукцией. Модуль магнитной индукции равен отношению максимального значению силы Ампер, действующей на проводник с током, к силе тока в проводнике и его длине . Направление вектора индукции определяется по правилу левой руки (по руке проводник, по большому пальцу сила, в ладонь – индукция). Единице магнитной индукции является тесла, равная индукции такого магнитного потока, в котором на 1 метр проводника при силе тока в 1 ампер действует максимальная сила Ампера 1 ньютон. Линия, в любой точке которой вектор магнитной индукции направлен по касательной, называется линией магнитной индукции. Если во всех точках некоторого пространства вектор индукции имеет одинаковое значение по модулю и одинаковое направление, то поле в этой части называется однородным. В зависимости от угла наклона проводника с током относительно вектора магнитной индукции сил Ампера изменяется пропорционально синусу угла .

47. Закон Ампера. Действие магнитного поля на движущийся заряд. Сила Лоренца.

Действие магнитного поля на ток в проводнике говорит о том, что оно действует на движущиеся заряды. Сила тока I в проводнике связана с концентрацией n свободных заряженных частиц, скоростью v их упорядоченного движения и площадью S поперечного сечения проводника выражением , где q – заряд одной частицы. Подставив это выражение в формулу силы Ампера, получим . Т.к. nSl равно числу свободных частиц в проводнике длиной l , то сила, действующая со стороны поля на одну заряженную частицу, движущуюся со скоростью v под углом a к вектору магнитной индукции B равна . Эту силу называют силой Лоренца. Направление силы Лоренца для положительного заряда определяется по правилу левой руки. В однородном магнитном поле частица, движущаяся перпендикулярно линиям индукции магнитного поля, под действием силы Лоренца приобретает центростремительное ускорение и движется по окружности. Радиус окружности и период обращения определяются выражениями . Независимость периода обращения от радиуса и скорости используется в ускорителе заряженных частиц – циклотроне.

48. Магнитные свойства вещества. Ферромагнетики.

Электромагнитное взаимодействие зависит от среды, в которой находятся заряды. Если около большой катушки подвесить маленькую, то она отклонится. Если в большую вставить железный сердечник, то отклонение увеличится. Это изменение показывает, что индукция изменяется при внесении сердечника. Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками. Физическая величина, показывающая, во сколько раз индуктивность магнитного поля в среде отличается от индуктивности поля в вакууме, называется магнитной проницаемостью . Не все вещества усиливают магнитное поле. Парамагнетики создают слабое поле, совпадающее по направлению с внешним. Диамагнетики ослабляю своим полем внешнее поле. Ферромагнетизм объясняется магнитными свойствами электрона. Электрон является движущимся зарядом, и поэтому обладает собственным магнитным полем. В некоторых кристаллах существуют условия зля параллельной ориентации магнитных полей электронов. В результате этого внутри кристалла ферромагнетика возникают намагниченные области, называемы доменами. С увеличением внешнего магнитного поля домены упорядочивают свою ориентацию. При некотором значении индукции наступает полное упорядочение ориентации доменов и наступает магнитное насыщение. При выводе ферромагнетика из внешнего магнитного поля не все домены теряют свою ориентацию, и тело становится постоянным магнитом. Упорядоченность ориентации доменов может быть нарушена тепловыми колебаниями атомов. Температура, при котором вещество перестает быть ферромагнетиком, называется температурой Кюри.

49. Электромагнитная индукция. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.

В замкнутом контуре при изменении магнитного поля возникает электрический ток. Этот ток называется индукционным током. Явление возникновения тока в замкнутом контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией. Появление тока в замкнутом контуре свидетельствует о наличии сторонних сил неэлектростатической природы или о возникновении ЭДС индукции. Количественное описание явления электромагнитной индукции дается на основе установления связи ЭДС индукции и магнитным потоком. Магнитным потоком Ф через поверхность называется физическая величина, равная произведению площади поверхности S на модуль вектора магнитной индукции B и на косинус угла a между ним и нормалью к поверхности . Единица магнитного потока – вебер, равный потоку, который при равномерном убывании до нуля за 1 секунду вызывает ЭДС в 1 вольт. Направление индукционного тока зависит от того, возрастает или убывает поток, пронизывающий контур, а также от направления поля относительно контура. Общая формулировка правила Ленца: возникающий в замкнутом контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится скомпенсировать изменение магнитного потока, которым данный ток вызывается. Закон электромагнитной индукции: ЭДС индукции в замкнутом контуре прямо пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром и равна скорости изменения этого потока, а с учетом правила Ленца. При изменении ЭДС в катушке, состоящей из n одинаковых витков, общая ЭДС в n раз больше ЭДС в одном отдельно взятом витке . Для однородного магнитного поля на основании определения магнитного потока следует, что индукция равна 1 тесла, если поток через контур в 1 квадратный метр равен 1 веберу. Возникновение электрического тока в неподвижном проводнике не объясняется магнитным взаимодействием, т.к. магнитное поле действует только на движущиеся заряды. Электрическое поле, возникающее при изменении магнитного поля, называется вихревым электрическим полем. Работа сил вихревого поля по перемещению зарядов и является ЭДС индукции. Вихревое поле не связано с зарядами и представляет собой замкнутые линии. Работа сил этого поля по замкнутому контуру может быть отлична от нуля. Явление электромагнитной индукции также возникает при покоящемся источнике магнитного потока и движущемся проводнике. В этом случае причиной возникновения ЭДС индукции, равной , является сила Лоренца.

50. Явление самоиндукции. Индуктивность. Энергия магнитного поля.

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток Ф через контур пропорционален вектору магнитной индукции В , а индукция, в свою очередь, силе тока в проводнике. Следовательно, для магнитного потока можно записать . Коэффициент пропорциональности называется индуктивностью и зависит от свойств проводника, его размеров и среды, в которой он находится. Единица индуктивности – генри, индуктивность равна 1 генри, если при силе тока в 1 ампер магнитный поток равен 1 веберу. При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока вызывает возникновение в катушке ЭДС индукции. Явление возникновения ЭДС индукции в катушке в результате изменения силы тока в этой цепи называется самоиндукцией. В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию при включении и убыванию при выключении цепи. ЭДС самоиндукции, возникающая в катушке с индуктивностью L , по закону электромагнитной индукции равна. Пусть при отключении сети от источника, ток убывает по линейному закону. Тогда ЭДС самоиндукции имеет постоянное значение, равное . За время t при линейном убывании в цепи пройдет заряд . При этом работа электрического тока равна . Эта работа совершается за свет энергии W м магнитного поля катушки.

51. Гармонические колебания. Амплитуда, период, частота и фаза колебаний.

Механическими колебаниями называют движения тел, повторяющиеся точно или приблизительно одинаково через одинаковые промежутки времени. Силы, действующие между телами внутри рассматриваемой системы тел, называют внутренними силами. Силы, действующие на тела системы со стороны других тел, называют внешними силами. Свободными колебаниями называют колебания, возникшие под воздействием внутренних сил, например – маятник на нитке. Колебания под действиями внешних сил – вынужденные колебания, например – поршень в двигателе. Общим признаков всех видов колебаний является повторяемость процесса движения через определенный интервал времени. Гармоническими называются колебания, описываемые уравнением . В частности колебания, возникающие в системе с одной возвращающей силой, пропорциональной деформации, являются гармоническими. Минимальный интервал, через который происходит повторение движения тела, называется периодом колебаний Т . Физическая величина, обратная периоду колебаний и характеризующая количество колебаний в единицу времени, называется частотой . Частота измеряется в герцах, 1 Гц = 1 с -1 . Используется также понятие циклической частоты, определяющей число колебаний за 2p секунд . Модуль максимального смещения от положения равновесия называется амплитудой. Величина, стоящая под знаком косинуса – фаза колебаний, j 0 – начальная фаза колебаний. Производные также гармонически изменяются, причем , а полная механическая энергия при произвольном отклонении х (угол, координата, и т.д.) равна , где А и В – константы, определяемые параметрами системы. Продифференцировав это выражение и приняв во внимание отсутствие внешних сил, возможно записать, что , откуда .

52. Математический маятник. Колебания груза на пружине. Период колебаний математического маятника и груза на пружине.

Тело небольших размеров, подвешенное на нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела, называется математическим маятником. Вертикальное положением является положением равновесия, при котором сила тяжести уравновешивается силой упругости. При малых отклонениях маятника от положения равновесия возникает равнодействующая сила, направленная к положению равновесия, и его колебания являются гармоническими. Период гармонических колебаний математического маятника при небольшом угле размаха равен . Чтобы вывести эту формулу запишем второй закон Ньютона для маятника . На маятник действуют сила тяжести и сила натяжения нити. Их равнодействующая при малом угле отклонения равна . Следовательно, , откуда .

При гармонических колебаниях тела, подвешенного на пружине, сила упругости равна по закону Гука . По второму закону Ньютона .

53. Превращение энергии при гармонических колебаниях. Вынужденные колебания. Резонанс.

При отклонении математического маятника от положения равновесия его потенциальная энергия увеличивается, т.к. увеличивается расстояние до Земли. При движении к положению равновесия скорость маятника возрастает, и увеличивается кинетическая энергия, за счет уменьшения запаса потенциальной. В положении равновесия кинетическая энергия – максимальная, потенциальная – минимальна. В положении максимального отклонения – наоборот. С пружинным – то же самое, но берется не потенциальная энергия в поле тяготения Земли, а потенциальная энергия пружины. Свободные колебания всегда оказываются затухающими, т.е. с убывающей амплитудой, т.к. энергия тратится на взаимодействие с окружающими телами. Потери энергии при этом равны работе внешних сил за это же время. Амплитуда зависит от частоты изменения силы. Максимальной амплитуды она достигает при частоте колебаний внешней силы, совпадающей с собственной частотой колебаний системы. Явление возрастания амплитуды вынужденных колебаний при описанных условиях называется резонансом. Так как при резонансе внешняя сила совершает за период максимальную положительную работу, то условие резонанса можно определить как условие максимальной передачи энергии системе.

54. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения. Звуковые волны. Скорость звука. Ультразвук

Возбуждение колебаний в одном месте среды вызывает вынужденные колебания соседних частиц. Процесс распространении колебаний в пространстве называется волной. Волны, в которых колебания происходят перпендикулярно направлению распространения, называются поперечными волнами. Волны, в которых колебания происходят вдоль направления распространения волны, называются продольными волнами. Продольные волны могут возникать во всех средах, поперечные – в твердых телах под действием сил упругости при деформации или сил поверхностного натяжения и сил тяжести. Скорость распространения колебаний v в пространстве называется скоростью волны. Расстояние l между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны. Зависимость длины волны от скорости и периода выражается как , или же . При возникновении волн их частота определяется частотой колебаний источника, а скорость – средой, где они распространяются, поэтому волны одной частоты могут иметь в разных средах различную длину. Процессы сжатия и разрежения в воздуха распространяются во все стороны и называются звуковыми волнами. Звуковые волны являются продольными. Скорость звука зависит, как и скорость любых волн, от среды. В воздухе скорость звука 331 м/с, в воде – 1500 м/с, в стали – 6000 м/с. Звуковое давление – дополнительно давление в газе или жидкости, вызываемое звуковой волной. Интенсивность звука измеряется энергией, переносимой звуковыми волнами за единицу времени через единицу площади сечения, перпендикулярного направлению распространения волн, и измеряется в ваттах на квадратный метр. Интенсивность звука определяет его громкость. Высота звука определяется частотой колебаний. Ультразвуком и инфразвуком называют звуковые колебания, лежащие вне пределов слышимости с частотами 20 килогерц и 20 герц соответственно.

55.Свободные электромагнитные колебания в контуре. Превращение энергии в колебательном контуре. Собственная частота колебаний в контуре.

Электрическим колебательным контуром называется система, состоящая из конденсатора и катушки, соединенных в замкнутую цепь. При подключении катушки к конденсатору в катушке возникает ток и энергия электрического поля превращается в энергию магнитного поля. Конденсатор разряжается не мгновенно, т.к. этому препятствует ЭДС самоиндукции в катушке. Когда же конденсатор разрядится полностью, ЭДС самоиндукции будет препятствовать убыванию тока, и энергия магнитного поля будет переходить в энергию электрического. Ток, возникающий при этом, зарядит конденсатор, причем знак заряда на обкладках будет противоположным первоначальному. После чего процесс повторяется до тех пор, пока вся энергия не будет затрачена на нагревание элементов цепи. Таким образом, энергия магнитного поля в колебательном контуре переходит в энергию электрического и обратно. Для полной энергии системы возможно записать соотношения: , откуда для произвольного момента времени. Как известно, для полной цепи . Полагая, что в идеальном случае R” 0 , окончательно получим , или же . Решением этого дифференциального уравнения является функция , где . Величину w называют собственной круговой (циклической) частотой колебаний в контуре.

56. Вынужденные электрические колебания. Переменный электрический ток. Генератор переменного тока. Мощность переменного тока.

Переменный ток в электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний. Пусть плоский виток имеет площадь S и вектор индукции B составляет с перпендикуляром к плоскости витка угол j . Магнитный поток Ф через площадь витка в данном случае определяется выражением . При вращении витка с частотой n угол j меняется по закону ., тогда выражение для потока примет вид. Изменения магнитного потока создают ЭДС индукции, равную минус скорости изменения потока . Следовательно, изменение ЭДС индукции будет проходить по гармоническому закону . Напряжение, снимаемое с выхода генератора, пропорционально количеству витков обмотки. При изменении напряжения по гармоническому закону напряженность поля в проводнике изменяется по такому же закону. Под действием поля возникает то, частота и фаза которого совпадают с частотой и фазой колебаний напряжения . Колебания силы тока в цепи являются вынужденными, возникающими под воздействием приложенного переменного напряжения. При совпадении фаз тока и напряжения мощность переменного тока равна или . Среднее значение квадрата косинуса за период равно 0.5, поэтому . Действующим значением силы тока называется сила постоянного тока, выделяющая в проводнике такое же количество теплоты, что и переменный ток. При амплитуде I max гармонических колебаний силы тока действующее напряжение равно . Действующее значение напряжения также в раз меньше его амплитудного значения Средняя мощность тока при совпадении фаз колебаний определяется через действующее напряжение и силу тока.

57. Активное, индуктивное и емкостное сопротивление.

Активным сопротивлением R называется физическая величина, равная отношению мощности к квадрату силы тока , что получается из выражения для мощности . При небольших частотах практически не зависит от частоты и совпадает с электрическим сопротивлением проводника.

Пусть в цепь переменного тока включена катушка. Тогда при изменении силы тока по закону в катушке возникает ЭДС самоиндукции . Т.к. электрическое сопротивление катушки равно нулю, то ЭДС равна минус напряжению на концах катушки, созданному внешним генератором (??? Каким еще генератором???) . Следовательно, изменение силы тока вызывает изменение напряжения, но со сдвигом по фазе . Произведение является амплитудой колебаний напряжение, т.е. . Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний тока называется индуктивным сопротивлением .

Пусть в цепи находится конденсатор. При его включение он четверть периода заряжается, потом столько же разряжается, потом то же самое, но со сменой полярности. При изменении напряжения на конденсаторе по гармоническому закону заряд на его обкладках равен . Ток в цепи возникает при изменении заряда: , аналогично случаю с катушкой амплитуда колебаний силы тока равна . Величина, равная отношению амплитуды к силе тока, называется емкостным сопротивлением .

58. Закон Ома для переменного тока.

Рассмотрим цепь, состоящую из последовательно подключенных резистора, катушки и конденсатора. В любой момент времени приложенное напряжение равно сумме напряжений на каждом элементе. Колебания силы тока во всех элементах происходят по закону . Колебания напряжения на резисторе совпадают по фазу с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на от колебаний тока, колебания напряжения на катушке опережают по фазе колебания тока на (почему отстают-то???) . Поэтому условие равенства суммы напряжений общему можно записать как. Воспользовавшись векторной диаграммой, можно увидеть, что амплитуда напряжений в цепи равна , или , т.е. . Полное сопротивление цепи обозначают . Из диаграммы очевидно, что напряжение также колеблется по гармоническому закону . Начальную фазу j можно найти по формуле. Мгновенная мощность в цепи переменного тока равна. Поскольку среднее значение квадрата косинуса за период равно 0.5, . Если в цепи присутствует катушка и конденсатор, то по закону Ома для переменного тока . Величина называется коэффициентом мощности.

59. Резонанс в электрической цепи.

Емкостное и индуктивное сопротивления зависят от частоты приложенного напряжения. Поэтому при постоянной амплитуде напряжения амплитуда силы тока зависит от частоты. При таком значении частоты, при котором , сумма напряжений на катушке и конденсаторе становится равной нулю, т.к. их колебания противоположны по фазе. В результате, напряжение на активном сопротивлении при резонансе оказывается равным полному напряжению, а сила тока достигает максимального значения. Выразим индуктивное и емкостное сопротивления при резонансе: , следовательно . Это выражение показывает, что при резонансе амплитуда колебаний напряжения на катушке и конденсаторе могут превосходить амплитуду колебаний приложенного напряжения.

60. Трансформатор.

Трансформатор представляет собой две катушки с разным количеством витков. При приложении к одной из катушек напряжения в ней возникает ток. Если напряжение изменяется гармоническому закону, то по такому же закону будет изменять и ток. Магнитный поток, проходящий через катушку, равен . При изменении магнитного потока в каждом витке первой катушки возникает ЭДС самоиндукции . Произведение является амплитудой ЭДС в одном витке, всего же ЭДС в первичной катушке. Вторичную катушку пронизывает тот же магнитный поток, поэтому . Т.к. магнитные потоки одинаковы, то. Активное сопротивление обмотки мало по сравнению с индуктивным сопротивлением, поэтому напряжение примерно равно ЭДС. Отсюда . Коэффициент К называется коэффициентом трансформации. Потери на нагревание проводов и сердечников малы, поэтому Ф 1” Ф 2 . Магнитный поток пропорционален силе тока в обмотке и количеству витков. Отсюда , т.е. . Т.е. трансформатор увеличивает напряжение в К раз, уменьшая во столько же раз силу тока. Мощность тока в обоих цепях при пренебрежении потерями одинакова.

61. Электромагнитные волны. Скорость их распространения. Свойства электромагнитных волн.

Любое изменение магнитного потока в контуре вызывает появление в нем индукционного тока. Его появление объясняется возникновением вихревого электрического поля при любом изменении магнитного поля. Вихревое электрическое поде обладает тем же свойством, что и обыкновенное – порождать магнитное поле. Таким образом, однажды начавшийся процесс взаимного порождения магнитного и электрического полей непрерывно продолжается. Электрическое и магнитные поля, составляющие электромагнитные волны, могут существовать и в вакууме, в отличие от других волновых процессов. Из опытов с интерференцией была установлена скорость распространения электромагнитных волн, составившая приблизительно . В общем случае скорость электромагнитной волны в произвольной среде вычисляется по формуле . Плотность энергии электрической и магнитной компоненты равны между собой: , откуда . Свойства электромагнитных волн схожи со свойствами других волновых процессов. При прохождении границы раздела двух сред частично отражаются, частично преломляются. От поверхности диэлектрика не отражаются, от металлов отражаются практически полностью. Электромагнитные волны обладают свойствами интерференции (опыт Герца), дифракции (алюминиевая пластинка), поляризации (сетка).

62. Принципы радиосвязи. Простейший радиоприемник.

Для осуществления радиосвязи необходимо обеспечить возможность излучения электромагнитных волн. Чем больше угол между пластинами конденсатора – тем более свободно ЭМ-волны распространяются в пространстве. В действительности, открытый контур состоит из катушки и длинного провода – антенны. Один конец антенны заземлен, другой – поднят над поверхностью Земли. Т.к. энергия электромагнитных волн пропорциональна четвертой степени частоты, то при колебаниях переменного тока звуковых частот ЭМ-волны практически не возникают. Поэтому используется принцип модуляции – частотной, амплитудной или фазовой. Простейший генератор модулированных колебаний представлен на рисунке. Пусть частота колебаний контура изменяется по закону. Пусть частота модулируемых звуковых колебаний также изменяется как , причем W <(а какого черта именно так???) (G – величина, обратная сопротивлению). Подставив в это выражение значения напряжений, где, получим . Т.к. при резонансе частоты, далекие от частоты резонанса, срезаются, то из выражения для i исчезают второе, третье и пятое слагаемые, т.е. .

Рассмотрим простейший радиоприемник. Он состоит из антенны, колебательного контура с конденсатором переменной емкости, диода-детектора, резистора и телефона. Частота колебательного контура подбирается таким образом, чтобы она совпадала с частотой несущей, при этом амплитуда колебаний на конденсаторе становится максимальной. Это позволяет выделить нужную частоту из всех принимаемых. С контура модулированные колебания высокой частоты поступают на детектор. После прохождения детектора ток каждые полпериода заряжает конденсатор, а следующие полпериода, когда ток не проходит через диод, конденсатор разряжается через резистор. (я правильно понял???).

64. Аналогия между механическими и электрическими колебаниями.

Аналогии между механическими и электрическими колебаниями выглядят так:

Координата

Скорость

Сила тока

Ускорение

Скорость изменения силы тока

Индуктивность

Жесткость

Величина, обратная

электроемкости

Напряжение

Вязкость

Сопротивление

Потенциальная энергия

деформированной пружины

Энергия электрического поля

конденсатора

С математической точки зрения это уравнение идентично уравнению колебаний для колебательного контура. Поэтому его решением является , где .

65. Шкала электромагнитных излучений. Зависимость свойств электромагнитного излучения от частоты. Применение электромагнитных излучений.

Диапазон электромагнитных вол длиной от 10 -6 м до м является радиоволнами. Применяются для теле- и радиосвязи. Длины от 10 -6 м до 780 нм – инфракрасные волны. Видимый свет – от 780 нм до 400 нм. Ультрафиолетовое излучение – от 400 до 10 нм. Излучение в диапазоне от 10 нм до 10 пм – рентгеновское излучение. Меньшим длинам волны соответствует гамма-излучение. (Применение???) . Чем меньше длина волны (следовательно, выше частота) тем меньше волны поглощаются средой.

65. Прямолинейное распространение света. Скорость света. Законы отражения и преломления света.

Прямая, указывающая направление распространения света, называется световым лучом. На границе двух сред свет может частично отразиться и распространяться в первой среде по новому направлению, а также частично пройти через границу и распространиться во второй среде. Луч падающий, отраженный и перпендикуляр к границе двух сред, восстановленный в точке падения, лежат в одной плоскости. Угол отражения равен углу падения. Этот закон совпадает с законом отражения волн любой природы и доказывается принципом Гюйгенса. При прохождении светом границы раздела двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред . <рисунок>. Величина n называется показателем преломления. Показатель преломления среды относительно вакуума называется абсолютным показателем преломления этой среды . При наблюдении эффекта преломления можно заметить, что в случае перехода среды из оптически более плотной среды в менее плотную, при постепенном увеличении угла падения можно достигнуть такой его величины, что угол преломления станет равен . При этом выполняется равенство . Угол падения a 0 называется предельным углом полного отражения. При углах, больших a 0 , происходит полное отражение.

66. Линза, построение изображения. Формула линзы.

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Линза, которая у краев толще, чем в середине, называется вогнутой, которая в середине толще – выпуклой. Прямая, проходящая через центры обеих сферических поверхностей линзы, называется главной оптической осью линзы. Если толщина линзы мала, то можно сказать, что главная оптическая ось пересекается с линзой в одной точке, называемой оптическим центром линзы. Прямая, проходящая через оптический центр, называется побочной оптической осью. Если на линзу направить пучок света, параллельный главной оптической оси, то у выпуклой линзы пучок соберется в точке F , получим формулу линзы . В формуле линзы расстояние от линзы до мнимого изображения считается отрицательным. Оптическая сила двояковыпуклой (да и вообще любой) линзы определяется из радиуса ее кривизны и показателя преломления стеклом и воздухом .

66. Когерентность. Интерференция света и ее применение в технике. Дифракция света. Дифракционная решетка.

В явлениях дифракции и интерференции наблюдаются волновые свойства света. Две световые частоты, разность фаз которых равна нулю, называются когерентными друг другу. При интерференции – сложении когерентных волн – возникает устойчивая во времени интерференционная картина максимумов и минимумов освещенности. При разности хода возникает интерференционный максимум, при – минимум. Явление отклонения света от прямолинейного распространения при прохождении края преграды называется дифракцией света. Это явление объясняется принципом Гюйгенса-Френеля: возмущение в любой точке является результатом интерференции вторичных волн, излучаемых каждым элементом волновой поверхности. Дифракция применяется в спектральных приборах. Элементом этих приборов является дифракционная решетка, представляющая собой прозрачную пластину с нанесенной на нее системой непрозрачных параллельных полос, расположенных на расстоянии d друг от друга. пусть на решетку падает монохроматическая волна. В результате дифракции из каждой щели свет распространяется не только в первоначальном направлении, но и во всех других. Если за решеткой поставить линзу, то в фокальной плоскости параллельные лучи от всех щелей соберутся в одну полоску. Параллельны лучи идут с разностью хода . При равенстве разности хода целому числу волн наблюдается интерференционный максимум света. Для каждой длины волны условие максимума выполняется при своем значении угла j , поэтому решетка разлагает белый свет в спектр. Чем больше длина волна, тем больше угол.

67. Дисперсия света. Спектр электромагнитного излучения. Спектроскопия. Спектральный анализ. Источники излучений и виды спектров.

Узкий параллельный пучок белого света при прохождении сквозь призму разлагается на пучки света разного цвета. Цветная полоса, видимая при этом, называется сплошным спектром. Явление зависимости скорости света от длины волны (частоты) называют дисперсией света. Этот эффект объясняется тем, что белый свет состоит из ЭМ-волн разных длин волны, от которых и зависит показатель преломления. Наибольшее значение он имеет для самой короткой волны – фиолетовой, наименьшее – для красно. В вакууме скорость света независимо от его частоты одинакова. Если источником спектра является разреженный газ, то спектр имеет вид узких линий на черном фоне. Сжатые газы, жидкости и твердые тела испускают сплошной спектр, где цвета плавно переходят друг в друга. Природа возникновения спектра объясняется тем, что каждому элементу присущ свой специфический набор излучаемого спектра. Это свойство позволяет применять спектральный анализ для выявления химического состава вещества. Спектроскопом называется прибор, с помощью которого исследуется спектральный состав света, испускаемого некоторым источником. Разложение производится с помощью дифракционной решетки(лучше) или призмы, для исследования ультрафиолетовой области применяется кварцевая оптика.

68. Фотоэффект и его законы. Кванты света. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.

Явление вырывания электронов из твердых и жидких тел под воздействием света называется внешним фотоэлектрическим эффектом, а вырванные таким образом электроны – фотоэлектронами. Опытным путем установлены законы фотоэффекта – максимальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности, для каждого вещества существует своя красная граница фотоэффекта, т.е. такая частота n min , при которой еще возможен фотоэффект, число фотоэлектронов, вырванных за секунду, прямо пропорционально интенсивности света. Также установлена безынерционность фотоэффекта – он возникает мгновенно после начала освещения при условии превышения красной границы. Объяснение фотоэффекта возможно с помощью квантовой теории, утверждающей дискретность энергии. Электромагнитная волна, по этой теории, состоит из отдельных порций – квантов(фотонов). При поглощении кванта энергии фотоэлектрон приобретает кинетическую энергию, которую можно найти из уравнения Эйнштейна для фотоэффекта , где А 0 – работа выхода, параметр вещества. Количество фотоэлектронов, покидающих поверхность металла пропорциональна количеству электронов, которое, в свою очередь, зависит от освещенности (интенсивности света).

69. Опыты Резерфорда по рассеиванию альфа-частиц. Ядерная модель атома. Квантовые постулаты Бора.

Первая модель строения атома принадлежит Томсону. Он предположил, что атом это положительно заряженный шар, внутри которого расположены вкрапления отрицательно заряженных электронов. Резерфорд провел опыт по облечению быстрыми альфа-частицами металлической пластинки. При этом наблюдалось, что часть из них немного отклоняются от прямолинейного распространения, а некоторая доля – на углы более 2 0 . Это было объяснено тем, что положительный заряд в атоме содержится не равномерно, а в некотором объеме, значительно меньшем размера атома. Эта центральную часть была названа ядром атома, где сосредоточен положительный заряд и почти вся масса. Радиус атомного ядра имеет размеры порядка 10 -15 м. Также Резерфорд предложил т.н. планетарную модель атома, по которой электроны вращаются вокруг атома как планеты вокруг Солнца. Радиус самой дальней орбиты = радиусу атома. Но эта модель противоречила электродинамике, т.к. ускоренное движение (в т.ч. электронов по окружности) сопровождается излучением ЭМ-волн. Следовательно, электрон постепенно теряет свою энергию и должен упасть на ядро. В действительности ни излучения, ни падения электрона не происходит. Объяснение этому дал Н.Бор, выдвинув два постулата – атомная система может находится только в некоторых определенных состояниях, в которых не происходит излучения света, хотя движение происходит ускоренное, и при переходе из одного состояния в другое происходит или поглощение, или испускание кванта по закону , где постоянная Планка . Различные возможные стационарные состояния определяются из соотношения , где n – целое число. Для движения электрона по окружности в атоме водорода справедливо выражение , кулоновская сила взаимодействия с ядром . Отсюда . Т.е. ввиду постулата Бора о квантовании энергии, движение возможно только по стационарным круговым орбитам, радиусы которых определяются как . Все состояния, кроме одного, являются стационарными условно, и только в одном – основном, в котором электрон обладает минимальным запасом энергии – атом может находиться сколь угодно долго, а остальные состояния называются возбужденными.

70. Испускание и поглощение света атомами. Лазер.

Атомы могут самопроизвольно испускать кванты света, при этом оно проходит некогерентно (т.к. каждый атом излучает независимо от других) и называется спонтанным. Переход электрона с верхнего уровня на нижний может происходит под влиянием внешнего электромагнитного поля с частотой, равной частоте перехода. Такое излучение называют вынужденным (индуцированным). Т.е. в результате взаимодействия возбужденного атома с фотоном соответствующей частоты высока вероятность появления двух одинаковых фотонов с одинаковым направлением и частотой. Особенностью индуцированного излучения является то, что оно монохроматично и когерентно. Это свойство положено в основу действия лазеров (оптических квантовых генераторов). Для того, чтобы вещество усиливало проходящий через него свет, необходимо, чтобы более половины его электронов находилось в возбужденном состоянии. Такое состояние называется состоянием с инверсной населенностью уровней. В этом случае поглощение фотонов будет происходит реже, чем испускание. Для работы лазера на рубиновом стержне используют т.н. лампу накачки, смысл которой заключается в создании инверсной населенности. При этом если один атом перейдет из метастабильного состояния в основное, то возникнет цепная реакция испускания фотонов. При соответствующей (параболической) форме отражающего зеркала возможно создать луч в одном направлении. Полное высвечивание всех возбужденных атомов происходит за 10 -10 с, поэтому мощность лазера достигает миллиардов ватт. Существуют также лазеры на газовых лампах, достоинством которых является непрерывность излучения.

70. Состав ядра атома. Изотопы. Энергия связи атомных ядер. Ядерные реакции.

Электрический заряд атома ядра q равен произведению элементарного электрического заряда e на порядковый номер Z химического элемента в таблице Менделеева . Атомы, имеющие одинаковое строение, имеют одинаковую электронную оболочку и химически неразличимы. В ядерной физике применяются свои единицы измерения. 1 ферми – 1 фемтометр, . 1 атомная единица массы – 1/12 массы атома углерода . . Атомы с одинаковым зарядом ядра, но различными массами, называются изотопами. Изотопы различаются своими спектрами. Ядро атома состоит из протонов и нейтронов. Число протонов в ядре равно зарядовому числу Z , число нейтронов – массе минус число протонов A–Z=N . Положительный заряд протона численно равен заряду электрона, масса протона – 1.007 а.е.м. Нейтрон не имеет заряда и имеет массу 1.009 а.е.м. (нейтрон тяжелее протона более чем на две электронные массы). Нейтроны стабильны только в составе атомных ядер, в свободном виде они живут ~15 минут и распадаются на протон, электрон и антинейтрино. Сила гравитационного притяжения между нуклонами в ядре превышает электростатическую силу отталкивания в 10 36 раз. Стабильность ядер объясняется наличием особых ядерных сил. На расстоянии 1 фм от протона ядерные силы в 35 раз превышают кулоновские, но очень быстро убывают, и при расстояния около 1.5 фм ими можно пренебречь. Ядерные силы не зависят от того, имеется ли у частицы заряд. Точные измерения масс атомных ядер показали наличие различия между массой ядра и алгебраической суммой масс составляющих его нуклонов. Для разделения атомного ядра на составляющие необходимо затратить энергию . Величину называют дефектом массы. Минимальную энергию, которую необходимо затратить на разделение ядра на составляющие его нуклоны, называется энергией связи ядра, расходуемой на совершение работы против ядерных сил притяжения. Отношение энергии связи к массовому числу называется удельной энергией связи. Ядерной реакцией называется превращение исходного атомного ядра при взаимодействии с какой-либо частицей в другое, отличное от исходного. В результате ядерной реакции могут испускаться частицы или гамма-кванты. Ядерные реакции бывают двух видов – для осуществления одних надо затратить энергию, при других происходит выделение энергии. Освобождающаяся энергия называется выходом ядерной реакции. При ядерных реакциях выполняются все законы сохранения. Закон сохранения момента импульса принимает форму закона сохранения спина.

71. Радиоактивность. Виды радиоактивных излучений и их свойства.

Ядра обладают способностью самопроизвольно распадаться. При этом устойчивыми являются только те ядра, которые обладают минимальной энергией по сравнению с теми, в которые ядро может самопроизвольно превратиться. Ядра, в которых протонов больше, чем нейтронов, нестабильны, т.к. увеличивается кулоновская сила отталкивания. Ядра, в которых больше нейтронов, тоже нестабильны, т.к. масса нейтрона больше массы протона, а увеличение массы приводит к увеличению энергии. Ядра могут освобождаться от избыточной энергии либо делением на более устойчивые части (альфа-распад и деление), либо изменением заряда (бета-распад). Альфа-распадом называется самопроизвольное деление атомного ядра на альфа частицу и ядро-продукт. Альфа-распаду подвержены все элементы тяжелее урана. Способность альфа-частицы преодолеть притяжение ядра определяется туннельным эффектом (уравнением Шредингера). При альфа-распаде не вся энергия ядра превращается в кинетическую энергию движения ядра-продукта и альфа-частицы. Часть энергии может пойти на возбуждения атома ядра-продукта. Таким образом, через некоторое время после распада ядро продукта испускает несколько гамма-квантов и приходит в нормальное состояние. Существует также еще один вид распада – спонтанное деление ядер. Самым легким элементом, способным к такому распаду, является уран. Распад происходит по закону , где Т – период полураспада, константа для данного изотопа. Бета-распад представляет собой самопроизвольное превращение атомного ядра, в результате которого его заряд увеличивается на единицу за счет испускания электрона. Но масса нейтрона превышает сумму масс протона и электрона. Этот объясняется выделением еще одной частицы – электронного антинейтрино . Не только нейтрон способен распадаться. Свободный протон стабилен, но при воздействии частиц он может распасться на нейтрон, позитрон и нейтрино. Если энергия нового ядра меньше, то происходит позитронный бета-распад . Как и альфа-распад, бета-распад также может сопровождаться гамма-излучением.

72. Методы регистрации ионизирующих излучений.

Метод фотоэмульсий – приложить образец к фотопластинке, и после проявки по толщине и длине следа частицы на ней возможно определить количество и распределение того или иного радиоактивного вещества в образце. Сцинтилляционный счетчик – прибор, в котором можно наблюдать превращение кинетической энергии быстрой частицы в энергию световой вспышки, которая, в свою очередь, инициирует фотоэффект (импульс электрического тока), который усиливается и регистрируется. Камера Вильсона – стеклянная камера с воздухом и пересыщенными парами спирта. При движении частицы через камеру она ионизирует молекулы, вокруг которых тут же начинается конденсация. Цепочка капель, образовавшихся в результате, образует трек частицы. Пузырьковая камера работает на тех же принципах, но в качестве регистратора служит жидкость, близкая к температуре кипения. Газоразрядный счетчик (счетчик Гейгера) – цилиндр, заполненный разреженным газом и натянутой нитью из проводника. Частица вызывает ионизацию газа, ионы под действием электрического поля расходятся к катоду и аноду, ионизируя по пути другие атомы. Возникает коронный разряд, импульс которого регистрируется.

73. Цепная реакция деления ядер урана.

В 30ых годах опытно было установлено, что при облучении урана нейтронами образуются ядра лантана, который не мог образоваться в результате альфа- или бета-распада. Ядро урана-238 состоит из 82 протонов и 146 нейтронов. При делении ровно пополам должен был бы образовываться празеодим , но в стабильном ядре празеодима нейтронов на 9 меньше. Поэтому при делении урана образуются другие ядра и избыток свободных нейтронов. В 1939 году было произведено первое искусственное деления ядра урана. При этом выделялось 2-3 свободных нейтрона и 200 МэВ энергии, причем около 165 МэВ выделялось в виде кинетической энергии ядер-осколков или или . При благоприятных условиях освободившиеся нейтроны могут вызвать деления других ядер урана. Коэффициент размножения нейтронов характеризует то, как будет протекать реакция. Если он более единицы. то с каждым делением количество нейтронов возрастает, уран нагревается до температуры в несколько миллионов градусов, и происходит ядерный взрыв. При коэффициенте деления меньшем единицы реакция затухает, а при равно единице – поддерживается на постоянном уровне, что используется в ядерных реакторах. Из природных изотопов урана только ядро способно к делению, а наиболее распространенный изотоп поглощает нейтрон и превращается в плутоний по схеме . Плутоний-239 по своим свойствам схож с ураном-235.

74. Ядерный реактор. Термоядерная реакция.

Ядерные реакторы бывают двух видов – на медленных и быстрых нейтронах. Большинство выделяющихся при делении нейтронов имеют энергию порядка 1-2 МэВ, и скорости около 10 7 м/с. Такие нейтроны называются быстрыми, и одинаково эффективно поглощаются как ураном-235, так и ураном-238, а т.к. тяжелого изотопа больше, а он не делится, то цепная реакция не развивается. Нейтроны, движущиеся со скоростям около 2Ч 10 3 м/с, называют тепловыми. Такие нейтроны активнее, чем быстрые, поглощаются ураном-235. Таким образом, для осуществления управляемой ядерной реакции, необходимо замедлить нейтроны до тепловых скоростей. Наиболее распространенными замедлителями в реакторах являются графит, обычная и тяжелая вода. Для того, чтобы коэффициент деления поддерживался на уровне единицы, используются поглотители и отражатели. Поглотителями являются стержни из кадмия и бора, захватывающие тепловые нейтроны, отражателем – бериллий.

Если в качестве горючего использовать уран, обогащенный изотопом с массой 235, то реактор может работать и без замедлителя на быстрых нейтронах. В таком реакторе большинство нейтронов поглощаются ураном-238, который в результате двух бета-распадов становится плутонием-239, также являющимся ядерным топливом и исходным материалом для ядерного оружия . Таким образом, реактор на быстрых нейтронах является не только энергетической установкой, но и размножителем горючего для реактора. Недостаток – необходимость обогащения урана легким изотопом.

Энергия в ядерных реакциях выделяется не только за счет деления тяжелых ядер, но и за счет соединения легких. Для соединения ядер необходимо преодолеть кулоновскую силу отталкивания, что возможно при температуре плазмы около 10 7 –10 8 К. Примером термоядерной реакции служит синтез гелия из дейтерия и трития или . При синтезе 1 грамма гелия выделяется энергия, эквивалентная сжиганию 10 тонн дизельного топлива. Управляемая термоядерная реакция возможна при нагревании ее до соответствующей температуры путем пропускания через нее электрического тока или с помощью лазера.

75. Биологическое действие ионизирующих излучений. Защита от радиации. Применение радиоактивных изотопов.

Мерой воздействия любого вила излучения на вещество является поглощенная доза излучения. Единицей дозы является грэй, равный дозе, которой облученному веществу массой 1 кг передается энергия в 1 джоуль. Т.к. физическое воздействие любого излучения на вещество связано не столько с нагреванием, сколько с ионизацией, то введена единица экспозиционной дозы, характеризующей ионизационное действие излучения на воздух. Внесистемной единицей экспозиционной дозы является рентген, равный 2.58Ч 10 -4 Кл/кг. При экспозиционной дозе в 1 рентген в 1 см 3 воздуха содержится 2 миллиарда пар ионов. При одинаковой поглощенной дозе действие различных видов облучения неодинаково. Чем тяжелее частица – тем сильнее ее действие (впрочем, более тяжелую и задержать легче). Различие биологического действия излучения характеризуется коэффициентом биологической эффективности, равном единице для гамма-лучей, 3 для тепловых нейтронов, 10 для нейтронов с энергией 0.5 МэВ. Доза, умноженная на коэффициент, характеризует биологическое действие дозы и называется эквивалентной дозой, измеряется в зивертах. Основным механизмом действия на организм является ионизация. Ионы вступают в химическую реакцию с клеткой и нарушают ее деятельность, что приводит к гибели или мутации клетки. Естественный фон облучения составляет в среднем 2 мЗв в год, для городов дополнительно +1 мЗв в год.

76. Абсолютность скорости света. Элементы СТО. Релятивистская динамика.

Опытным путем было установлено, что скорость света не зависит от того, в какой системе отсчета находится наблюдатель. Также невозможно разогнать ни одну элементарную частицу, например электрон, до скорости, равной скорости света. Противоречие между этим фактом и принципом относительности Галилея был разрешен А.Эйнштейном. Основу его [специальной] теории относительности составили два постулата: любые физические процессы протекают одинаково в различных инерциальных системах отсчета, скорость света в вакууме не зависит от скорости источника света и наблюдателя. Явление, описываемые теорией относительности называются релятивистскими. В теории относительности вводятся два класса частиц – те, которые движутся со скоростями, меньшими с , и с которыми можно связать систему отсчета, и те, которые движутся со скоростями равными с , с которыми нельзя связать системы отсчета. Умножив это неравенство () на , получим . Это выражение представляет из себя релятивистский закон сложения скоростей, совпадающий с Ньютоновским при v<. При любых относительных скоростях инерциальных систем отсчета V

Собственное время, т.е. то, которое действует в системе отсчета, связанной с частицей, инвариантно, т.е. не зависит от выбора инерциальной системы отсчета. Принцип относительности модифицирует это утверждение, говоря, что в каждой инерциальной системе отсчета время течет одинаково, но единого для всех, абсолютного, времени не существует. Координатное время связано с собственным временем законом. Возведя это выражение в квадрат, получим . Величину s называют интервалом. Следствием релятивистского закона сложения скоростей является эффект Доплера, характеризующий изменение частоты колебаний в зависимости от скоростей движения источника волн и наблюдателя. При движении наблюдателя под углом Q к источнику, частота изменяется по закону . При движении удаления от источника спектр сдвигается к меньшим частотам, соответствующим большей длине волны, т.е. к красному цвету, при приближении – к фиолетовому. Импульс также изменяется при скоростях, близких к с :.

77. Элементарные частицы.

Изначально к элементарным частицам относили протон, нейтрон и электрон, позже – фотон. Когда открыли распад нейтрона – к числу элементарных частиц добавились мюоны и пионы. Их масса составляла от 200 до 300 электронных масс. Несмотря на то, что нейтрон распадается на проток, электрон и нейтрино, внутри него этих частиц нет, и он считается элементарной частицей. Большинство элементарных частиц нестабильны, и имеют периоды полураспада порядка 10 -6 –10 -16 с. В разработанной Дираком релятивистской теории движения электрона в атоме следовало, что у электрона может существовать двойник с противоположным зарядом. Эта частица, обнаруженная космическом излучении, называется позитроном. Впоследствии было доказано, что у всех частиц существуют свои античастицы, отличающиеся спином и (при наличии) зарядом. Также существуют истинно-нейтральные частицы, полностью совпадающие со своими античастицами (пи-нуль-мезон и эта-нуль-мезон ). Явление аннигиляции представляет собой взаимное уничтожение двух античастиц с выделением энергии, например . По закону сохранения энергии выделяемая энергия пропорциональна сумме масс проаннигилировавших частиц. В соответствии с законами сохранения, частицы никогда не возникают поодиночке. Частицы делятся на группы, по возрастанию массы – фотон, лептоны, мезоны, барионы.

Всего существует 4 вида фундаментальных (несводимых к другим) взаимодействия – гравитационное, электромагнитное, слабое и сильное. Электромагнитное взаимодействие объясняется обменом виртуальными фотонами (Из неопределенности Гейзенберга следует, что за небольшое время электрон за счет своей внутренней энергии может выпустить квант, и возместить потерю энергии захватом такого же. Испущенный квант поглощается другим, таким образом обеспечивая взаимодействие.), сильное – обменом глюонами (спин 1, масса 0, переносят "цветовой" кварковый заряд), слабое – векторными бозонами. Гравитационное взаимодействие не объясняется, но кванты гравитационного поля теоретически должны иметь массу 0, спин 2 (???).

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ПО ФИЗИКЕ

Билет №1

1. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость.

2. Лабораторная работа по теме «Измерение ускорения тела при равноускоренном движении».

Билет №2

1. Свободное падение тел. Равномерное движение по окружности. Центростремительное ускорение. Кинематика вращательного движения. Связь между угловой и линейной скоростью.

2. Задача по теме «Законы сохранения в механике».

Билет №3

1. Взаимодействие тел. Сила. Второй закон Ньютона.

2. Задача по теме «Импульс тела».

Билет №4

1. Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.

2. Задача по теме «Кинематика вращательного движения».

Билет №5

1. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.

2. Задача на нахождение КПД теплового двигателя.

Билет №6

1. Энергия. Потенциальная и кинетическая энергия..

2. Задача по теме «Первый закон термодинамики. КПД тепловых двигателей».

Билет №7

1. Превращение энергии при механических колебаниях. Свободные и вынужденные колебания.

2. Задача на параллельное соединение проводников

Билет №8

1. Опытное основание основных положений МКТ строения вещества. Масса и размер молекул. Постоянная Авогадро.

2. Задача на движение или равновесие зараженной частицы в электрическом поле.

Билет №9

1. Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.

2. Задача на определение индукции магнитного поля (по закону ампера или формулы для расчета силы Лоренца).

Билет №10

1. Работа силы. Мощность.

2. Задача по теме «Закон сохранения энергии»

Билет №11

1. Уравнение состояния идеального газа. Изопроцессы.

2. Задача по теме «Закон Кулона».

Билет №12

1. Испарение и конденсация. Насыщение и ненасыщенные пары. Влажность воздуха. Измерение влажности воздуха.

2. Лабораторная работа «Измерение сопротивления двух последовательно соединенных резисторов».

Билет №13

1. Кристаллические и амфорные тела. Упругие и пластические деформации твердых тел.

2. Задача на применение закона электромагнитной индукции.

Билет №14

1. Силы и энергия межмолекулярного взаимодействия. Строение газообразных, жидких и твёрдых тел. Опыт Штерна.

2. Задача по теме «Внутренняя энергия. Расчет количества теплоты».



Билет №15

1. Идеальный газ. Параметры состояния идеального газа

2. Лабораторная работа по теме « Определение модуля упругости материала»

Билет №16

1. Внутренняя энергия. Теплоёмкость. Удельная теплоёмкость. Первое начало термодинамики. Адиабатный процесс.

2. Задача на применение закона сохранения энергии.

Билет № 17

1. Электромагнитная индукция. Магнитный поток. Закон электромагнитной индукции. Правило Ленца

2. Задача на тему «Закон сохранения импульса».

Билет №18

1. Конденсаторы. Электроемкость конденсатора. Применение конденсаторов.

2. Задача на применение уравнения состояния идеального газа.

Билет №19

1. Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.

2. Лабораторная работа «Измерение массы тела».

Билет №20

1. Магнитное поле, условия его существования. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие. Магнитная индукция.

2. Лабораторная работа «Измерение влажности воздуха».

Билет №21

1. Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.

2. Задача на изопроцессы.

Билет №22

1. Принцип действия тепловой машины. КПД теплового двигателя.

2. Задача на определение работы газа с помощью графика зависимости давления газа от его объема.

Билет №23

1. Второе начало термодинамики. Холодильная машина. Тепловой двигатель.

2. Задача на применение закона сохранения импульса.

Билет №24

1. Свойства жидкостей. Поверхностный слой жидкости. Капиллярные явления.

2. Лабораторное работа по теме «Определение влажности воздуха в кабинете физики».

Билет №25

1. Свойства твёрдых тел. Закон Гука. Механические свойства твёрдых тел. Плавление и кристаллизация.

2. Задача на определение модуля Юнга материала, из которого изготовлена проволока.



Билет №26

1. Принцип суперпозиции полей. Работа сил электростатического поля. Потенциал. Разность потенциалов.

2. Задача на применение закона Джоуля-Ленца.

Приложение к экзаменационным билетам (задачи).

Билет №2

Билет №3

Билет №4

Билет №5

Билет №6

Билет №7

Билет №8

Билет №9

Задача на определение индукции магнитного поля (по закону ампера или формулы для расчета силы Лоренца).

Определите индукцию однородного магнитного поля, если на проводник длиной 0,2м со стороны поля действует сила 50 мН. Проводник образует угол 30 0 направлением силовых линий поля и по нему течет ток силой 10 А.

Билет №10

Билет №11

Билет №13

Билет №14

Билет №16

Билет №17

Билет №18

Билет №21

Задача на изопроцессы.

На рисунке представлены две изохоры для одной и той же массы идеального газа. Как определяется отношение объемов, занимаемых газами , если углы наклона изохор к оси абсцисс равны и ?

Билет №22

Билет №23

Билет №25

Билет № 26

Эталоны правильных ответов

Билет№1

1. Механическое движение. Относительность движения. Система отсчета. Материальная точка. Траектория. Путь и перемещение. Мгновенная скорость.

Механическим движением называют измене­ние положения тела (или его частей) относительно других тел.

Из этих примеров видно, что всегда надо ука­зать тело, относительно которого рассматривается движение, его называюттелом отсчета. Система ко­ординат, тело отсчета, с которым она связана, и вы­бранный способ измерения времени образуютси­стему отсчета. Та­ким образом, иногда размерами тела по сравнению с расстоянием до него можно пренебречь, в этих случаях тело считают материальной точкой, Линию, вдоль которой движется материальная точка, называют траекторией. Длина части траектории между начальным и конечным положением точки называют путем (L). Единица измерения пути - 1м.

Механическое движение характеризуется тре­мя физическими величинами: перемещением, ско­ростью и ускорением.

Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называетсяперемещением (s).

Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это измене­ние произошло

Движение, при котором скорость тела не ме­няется, т. е. тело за любые равные промежутки вре­мени перемещается на одну и ту же величину, назы­ваютравномерным прямолинейным движением.

При таком движении скорость и ускорение имеют одинаковые направления, причем скорость изменяется одинаково за любые равные промежутки времени. Этот вид движения называютравноуско­ренным.

При торможении автомобиля скорость умень­шается одинаково за любые равные промежутки вре­мени, ускорение меньше нуля; так как скорость уменьшается, то уравнения принимают вид:

v = v 0 + at, s = v 0 t - at 2 / 2. Такое движение называют равнозамедленным.

Билет №2

Свободное падение тел. Равномерное движение по окружности. Центростремительное ускорение. Кинематика вращательного движения. Связь между угловой и линейной скоростью.

1. Одним из наиболее распространенных видов движения с постоянным ус­корением - свободное падение тел.

Свободное падение - это движение тел только лишь под действием притяжения Земли (под действием силы тяжести).

При свободном падении все тела вблизи поверхности Земли независимо от их массы приобретают одинаковое ускорение, называемое ускорением свободного падения.

Условное обозначение ускорения свободного падения - g.

На поверхности Земли ускорение свободного падения (g) меняется в пре­делах от 9,78 м/с 2 на экваторе до 9,83 м/с 2 на полюсе.

2. Движение по окружности - частный случай криволинейного движения.

Если за любые равные промежутки времени радиус-вектор тела поворачивается на одинаковые углы, а линейная скорость тела по модулю не изменяется (т. е. если |v 0 |=|v|), движение тела по окружности называют равномерным (не следует забывать, что равномерное движение по окружности происходит с ускорением, так как скорость тела непрерывно меняется по направлению).

Угловой скоростью называют величину, равную отношению угла поворота радиуса-вектора точки, движущейся по окружности к промежутку времени t, в течение которого произошел этот поворот.

Скорость тела, направленную по касательной к окружности, называют линейной .

Мгновенная скорость тела в каждой точке криволинейной траектории направлена по касательной к траектории. Следовательно, в криволинейном движении направление скорости тела непрерывно изменяется . т.е. движение по окружности со скоростью, постоянной по модулю является ускоренным. Центростремительное ускорение всегда направлено к центру окружности:

Линейная и угловая скорости связаны между собой: , т.е. .

Период - физическая величина, показывающая, чему равно время, за которое точка совершает один полный оборот. Если обозначить N – число оборотов, а Т – период, то: .

Единица измерения в СИ – с. Т.к. за период точка поворачивается на угол, то .

Частота – количество оборотов, которое совершила точка за единицу времени: .

Единица измерения в СИ – Гц (герц ). Частота равна одному герцу, если за 1 секунду точка совершает один полный оборот (1Гц=1с -1 ). Частота и период – взаимно обратные величины: . Следовательно: .

Билет№3

Сила. Масса. Второй закон Ньютона.

Действия тел друг на друга, создающие ускорение, называются силами. Все силы можно разделить на два основных типа: силы, действующие при непосред­ственном соприкосновении, и силы, которые действуют независимо от того, со­прикасаются тела или нет, т. е. на расстоянии.

Сила - векторная величина. Силу измеряют динамометром. Силы, действующие при непосредственном соприкосновении, действуют по всей соприкасающейся поверхности тел. Молоток, ударяющий по шляпке гвоздя, дей­ствует на всю шляпку. Но если площадь мала, то считают, тело действует на одну точку. Эта точка называется точкой приложения. Если же на тело действует несколько сил, то их действие на тело можно заме­нить одной заменяющую силу называют суммой или равнодействующей.

Свойство тел приобретать определенное ускорение при данном воздействии называется инертностью . Инертность состоит в том, что для изменения скорости тела на заданную величину нужно, чтобы на него действовало другое тело и это действие длилось некоторое время. Инертность - это свойство, присущее всем телам. Масса тела - количественная мера его инертности.

О теле, которое в результате взаимодействия меньше изменяет свою скорость, говорят, что оно более инертно, масса его больше:

В СИ единицей массы тела является килограмм (кг).

Так как масса входит в закон всемирного тяготения, то она определяет также гравитационное взаимодействие тел.

II закон Ньютона

Сила, действующая на тело, равна произведению массы тела на создаваемое этой силой ускорение, причем направления силы и ускорения совпадают: а =F/m

Закон можно выразить в другой форме. Ускорение, сообщаемое телу, прямо пропорционально действующей на тело силе,- обратно пропорционально массе тела и направлено так же, как и сила.

Особенности II закона Ньютона:

1. Верен для любых сил.

2. Сила - причина, определяет ускорение.

3. Вектор а сонаправлен с вектором F.

4. Если действуют на тело несколько сил, то берется равнодействующая.

5. Если равнодействующая равна нулю, то ускорение равно нулю. (Первый закон Ньютона)

6. Можно применять только по отношению к телам, скорость которых мала по сравнению со скоростью света.

Билет№4

План ответа

1. Импульс тела. 2. Закон сохранения импуль­са. 3. Применение закона сохранения импульса. 4. Реактивное движение.

Существуют величины, которые могут сохра­няться при взаимодействии тел. Такими величинами являются энергия и импульс.

Импульсом тела называют векторную физи­ческую величину, являющуюся количественной ха­рактеристикой поступательного движения тел. Им­пульс обозначается р. Единица измерения импульса

Р - кг м/с. Импульс тела равен произведению мас­сы тела на его скорость: р = mv. Направление векто­ра импульса р совпадает с направлением вектора скорости тела v (рис. 4).

Для импульса тел выполняется закон сохране­ния.Имеет вид m 1 v 1 + т 2 v 2 = m 1 v 1 " + т 2 v 2 " где т 1 и

т 2 - массы тел, а v 1 и v 2 , - скорости до взаимодей­ствия, v 1 " и v 2 " - скорости после взаимодействия. Эта

формула и является математическим выражением закона сохранения импульса:импульс замкнутой физической системы сохраняется при любых вза­имодействиях, происходящих внутри этой системы.

В механике закон сохранения импульса и за­коны Ньютона связаны между собой. Если на тело массой т в течение времени t действует сила и ско­рость его движения изменяется от v 0 до v, то уско­рение движения a тела равно a = (v - v 0)/t. На осно­вании второго закона Ньютона для силы F можно записать F = та = m(v - v 0)/t, отсюда следует

Ft = mv - mv 0 .

Ft - векторная физическая величина, харак­теризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время t ее действия, называетсяимпульсом силы.

Единица импульсав СИ - Н с.

Закон сохранения импульса лежит в основе реактивного движения.Реактивное движение - это такое движение тела, которое возникает после отде­ления от тела его части.

Большая заслуга в развитии теории реак­тивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рас­считал запасы топлива, необходимые для преодоле­ния силы земного притяжения; основы теории жид­костного реактивного двигателя, а так же элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одно­временно) и последовательный (реактивные двигате­ли работают друг за другом).В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактив­ный принцип.

Билет №5

Закон всемирного тяготения. Гравитационное поле. Сила тяжести. Вес тела.

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации, или силами всемирного тяготения. Сила всемирного тяготения проявляется в Космосе, Солнечной системе и на Земле. Ньютон обобщил законы движения небесных тел и выяснил, что сила F равна:

m 1 и т 2 -массы взаимодействующих тел, R - расстояние между ними, G - коэффициент пропорциональности, который называется гравитационной постоянной. Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами. В результате закон всемирного тяготения звучит так: между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки.

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свободного падения. В соответствии со вторым законом Ньютона g = F тяж *m следовательно, F тяж = mg. Сила тяжести всегда направлена к центру Земли. В зависимости от высоты h над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2.
В технике и быту широко используется понятие веса тела . Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете (рис. 1). Вес тела обозначается Р. Единица веса - Н. Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

Если тело свободно падает, то в этом случае P = (g- g)m = 0 . Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, поэтому в корабле наблюдается состояние невесомости.

Билет №6

Энергия. Потенциальная и кинетическая энергия.

Движущиеся тела имеют способность выполнять работу в случае изменения скорости. Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией.

Часть механической энергии, обусловленная движением тела, называется кинетической энергией - Ек.

Зависимость кинетической энергии от массы движущегося тела и его скорости

Кинетическая энергия тела, движущегося с определенной скоростью, равна работе, которую нужно выполнить, чтобы придать неподвижному телу эту скорость. Пусть до неподвижного тела массой m приложена постоянную силу F. Тогда Eк = А = Fs, где s- модуль перемещения. Подставляя в эту формулу выражения F = mа и s = v 2 /2a , получим: кинетическая энергия тела массой m, движущегося со скоростью v , выражается формулой Eк = mv 2 /2.

Часть механической энергии, которая определяется взаимным расположением тел, которые взаимодействуют, называется потенциальной энергией - Еп .

Например, если сила тяжести выполняет работу во время падения груза вниз, система «поднятый груз и Земля» имеет потенциальную энергию.

Обозначим изменение потенциальной энергии , где индексом 1 обозначены начальное состояние системы, а индексом 2 - конечный.

Если во время изменения взаимного расположения тел система выполняет положительную работу, ее потенциальная энергия уменьшается, а если система выполняет отрицательную работу, ее потенциальная энергия увеличивается.

Изменение потенциальной энергии ΔЕп и А работа, выполненная системой, связаны соотношением:

ΔЕп = -A.

Из этой формулы следует, что физический смысл имеет только изменение потенциальной энергии: она измеряется работой, что ее исполнила система. Выбор нулевого уровня потенциальной энергии определяется соображениями удобства для решения каждой конкретной задачи.

а) Потенциальная энергия груза, поднятого над землей . Во время поднятия груза массой m на высоту h работа выполняется mgh , поэтому потенциальная энергия системы «груз и Земля» увеличивается на mgh. Выберем как нулевой уровень потенциальной энергии состояние системы, когда груз находится на поверхности земли. Тогда Еп = mgh .

б) Потенциальная энергия деформированной пружины. Потенциальная энергия деформированной пружины равна работе, которую надо выполнить, чтобы деформировать пружину. А = kx 2 /2, где k - жесткость пружины, x - ее удлинение. Следовательно, потенциальная энергия деформированной пружины Eп = kx 2 /2.

Билет №7

План ответа

1. Определение колебательного движения. 2. Свободные колебания. 3. Превращения энергии. 4. Вынужденные колебания.

Механическими колебаниями называют дви­жения тела, повторяющиеся точно или приблизи­тельно через одинаковые промежутки времени. Основ­ными характеристиками механических колебаний являются: смещение, амплитуда, частота, период. Смещение - это отклонение от положения равнове­сия.Амплитуда - модуль максимального отклоне­ния от положения равновесия.Частота - число полных колебаний, совершаемых в единицу времени. Период - время одного полного колебания, т. е. ми­нимальный промежуток времени, через который происходит повторение процесса. Период и частота связаны соотношением: v = 1/T.

Простейший вид колебательного движения - гармонические колебания, при которых колеблю­щаяся величина изменяется со временем по закону синуса или косинуса (рис.).

Свободными - называют колебания, которые совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воз­действий на систему, совершающую колебания. На­пример, колебания груза на нити (рис.).

Рассмотрим процесс превращения энергии на примере колебаний груза на нити (см. рис.).

При отклонении маятника от положения рав­новесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке А маятник обладает потенциальной энергией mgh. При движе­нии к положению равновесия, к точке О, уменьшает­ся высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия mgh превратит­ся в кинетическую энергию mv г /2. В положении равновесия кинетическая энергия имеет максималь­ное значение, а потенциальная энергия минимальна. После прохождения положения равновесия происхо­дит превращение кинетической энергии в потенци­альную, скорость маятника уменьшается и при мак­симальном отклонении от положения равновесия становится равной нулю. При колебательном движе­нии всегда происходят периодические превращения его кинетической и потенциальной энергий.

При свободных механических колебаниях не­избежно происходит потеря энергии на преодоление сил сопротивления. Если колебания происходят под действием периодически действующей внешней си­лы, то такие колебания называютвынужденными.

При совпадении частоты внешней силы и час­тоты собственных колебаний тела амплитуда вынуж­денных колебаний резко возрастает. Такое явление называют механическим резонансом.

Хт- амплитуда

w - частота внешней силы

w0 - частота собственных колебаний

Явление резонанса может быть причиной раз­рушения машин, зданий, мостов, если собственные их частоты совпадают с частотой периодически дей­ствующей силы. Поэтому, например, двигатели в ав­томобилях устанавливают на специальных амортиза­торах, а воинским подразделениям при движении по мосту запрещается идти «в ногу».

Билет №8

План ответа

1. Основные положения. 2. Опытные доказа­тельства. 3. Микро-характеристики вещества.

Молекулярно-кинетическая теория - это раз­дел физики, изучающий свойства различных состоя­ний вещества, основывающийся на представлениях о существовании молекул и атомов, как мельчайших частиц вещества. В основе МКТ лежат три основных положения:

1. Все вещества состоят из мельчайших час­тиц: молекул, атомов или ионов.

2. Эти частицы находятся в непрерывном хао­тическом движении, скорость которого определяет температуру вещества.

3. Между частицами существуют силы притя­жения и отталкивания, характер которых зависит от расстояния между ними.

Основные положения МКТ подтверждаются многими опытными фактами. Существование моле­кул, атомов и ионов доказано экспериментально, мо­лекулы достаточно изучены и даже сфотографирова­ны с помощью электронных микроскопов. Способ­ность газов неограниченно расширяться и занимать весь предоставленный им объем объясняется непре­рывным хаотическим движением молекул. Упругость газов, твердых и жидких тел, способность жидкостейсмачивать некоторые твердые тела, процессы окра­шивания, склеивания, сохранения формы твердыми телами и многое другое говорят о существовании сил притяжения и отталкивания между молекулами. Явление диффузии - способность молекул одного вещества проникать в промежутки между молекула­ми другого - тоже подтверждает основные положе­ния МКТ. Явлением диффузии объясняется, напри­мер, распространение запахов, смешивание разно­родных жидкостей, процесс растворения твердых тел в жидкостях, сварка металлов путем их расплавления или путем давления. Подтверждением непре­рывного хаотического движения молекул является также и броуновское движение - непрерывное хао­тическое движение микроскопических частиц, не­растворимых в жидкости.

Движение броуновских частиц объясняется хаотическим движением частиц жидкости, которые сталкиваются с микроскопическими частицами и приводят их в движение. Опытным путем было дока­зано, что скорость броуновских частиц зависит от температуры жидкости. Теорию броуновского движе­ния разработал А. Эйнштейн. Законы движения час­тиц носят статистический, вероятностный характер. Известен только один способ уменьшения интенсив­ности броуновского движения - уменьшение темпе­ратуры. Существование броуновского движения убе­дительно подтверждает движение молекул.

Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорцио­нальным числу частиц, т. е. структурных элементов, содержащихся в теле, v.

Единицей количества вещества является моль. Моль - это количество вещества, содержащее столько же структурных элементов любого вещества, сколько содержится атомов в 12 г углерода С 12 . От­ношение числа молекул вещества к количеству ве­щества называютпостоянной Авогадро:

n a = N/v. na =6,02 10 23 моль -1 .

Постоянная Авогадро показывает, сколько ато­мов и молекул содержится в одном моле вещества.Мо­лярной массой называют величину, равную отноше­нию массы вещества к количеству вещества:

Молярная масса выражается в кг/моль. Зная молярную массу, можно вычислить массу одной мо­лекулы:

m 0 = m/N = m/vN A = М/N A

Средняя масса молекул обычно определяется химическими методами, постоянная Авогадро с вы­сокой точностью определена несколькими физиче­скими методами. Массы молекул и атомов со значи­тельной степенью точности определяются с помощью масс-спектрографа.

Массы молекул очень малы. Например, масса молекулы воды: т = 29,9 10 -27 кг.

Молярная масса связана с относительной мо­лекулярной массой Mr. Относительная молярная масса - это величина, равная отношению массы мо­лекулы данного вещества к 1/12 массы атома угле­рода С 12 . Если известна химическая формула вещест­ва, то с помощью таблицы Менделеева может быть определена его относительная масса, которая, будучи выражена в килограммах, показывает величину мо­лярной массы этого вещества.

Билет №9

План ответа

1. Понятие идеального газа, свойства. 2. Объ­яснение давления газа. 3. Необходимость измерения температуры. 4. Физический смысл температуры. 5. Температурные шкалы. 6. Абсолютная темпера­тура.

Для объяснения свойств вещества в газообраз­ном состоянии используется модель идеального газа. Идеальным принято считать газ, если:

а) между мо­лекулами отсутствуют силы притяжения, т. е. моле­кулы ведут себя как абсолютно упругие тела;

б) газ очень разряжен, т. е. расстояние между молекулами намного больше размеров самих молекул;

в) тепловое равновесие по всему объему достигается мгновенно. Условия, необходимые для того, чтобы реальный газ обрел свойства идеального, осуществляются при со­ответствующем разряжении реального газа. Некото­рые газы даже при комнатной температуре и атмо­сферном давлении слабо отличаются от идеальных.

Основными параметрами идеального газа являются давление, объем и температура.

Одним из первых и важных успехов МКТ было качественное и количественное объяснение давления газа на стенки сосуда.Качественное объяснение за­ключается в том, что молекулы газа при столкнове­ниях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела и передают свои импульсы стенкам сосуда.

На основании использования основных поло­жений молекулярно-кинетической теории было по­лучено основное уравнение МКТ идеального газа, ко­торое выглядит так: р = 1/3 т 0 пv 2 .

Здесь р - давление идеального газа, m 0 -

масса молекулы, п - концентрация молекул, v 2 - средний квадрат скорости молекул.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеаль­ного газа Е k получим основное уравнение МКТ иде­ального газа в виде: р = 2/3nЕ k .

Однако, измерив только давление газа, невоз­можно узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентра­цию. Следовательно, для нахождения микроскопиче­ских параметров газа нужно измерение какой-то еще физической величины, связанной со средней кинети­ческой энергией молекул. Такой величиной в физике является температура.Температура - скалярная физическая величина, описывающая состояние тер­модинамического равновесия (состояния, при кото­ром не происходит изменения микроскопических па­раметров). Как термодинамическая величина температура характеризует тепловое состояние системы и измеряется степенью его отклонения от принятого за нулевое, как молекулярно-кинетическая величина характеризует интенсивность хаотического движения молекул и измеряется их средней кинетической энергией.

E k = 3/2 kT, где k = 1,38 10 -23 Дж/К и назы­ваетсяпостоянной Больцмана.

Температура всех частей изолированной си­стемы, находящейся в равновесии, одинакова. Изме­ряется температура термометрами в градусах раз­личных температурных шкал. Существует абсолют­ная термодинамическая шкала (шкала Кельвина) и различные эмпирические шкалы, которые отличают­ся начальными точками. До введения абсолютной шкалы температур в практике широкое распростра­нение получила шкала Цельсия (за О °С принята точка замерзания воды, за 100 °С принята точка ки­пения воды при нормальном атмосферном давлении).

Единица температуры по абсолютной шкале называетсяКельвином и выбрана равной одному гра­дусу по шкале Цельсия 1 К = 1 °С. В шкале Кельви­на за ноль принят абсолютный ноль температур, т. е. температура, при которой давление идеального газа при постоянном объеме равно нулю. Вычисления да­ют результат, что абсолютный ноль температуры ра­вен -273 °С. Таким образом, между абсолютной шкалой температур и шкалой Цельсия существует связь Т = t °С + 273. Абсолютный ноль температур недостижим, так как любое охлаждение основано на испарении молекул с поверхности, а при приближе­нии к абсолютному нулю скорость поступательного движения молекул настолько замедляется, что испарение практически прекращается. Теоретически при абсолютном нуле скорость поступательного движения молекул равна нулю, т. е. прекращается тепловое движение молекул.

Билет №10

Работа силы. Мощность.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними. Эта формула справедлива в том случае, когда сила постоянна и перемещение тела происходит вдоль прямой.

Знак работы определяется знаком косинуса угла между силой и перемещением.

Если α<90˚, то A>0,

Если α>90˚, то A<0

Если α=0, то A=0

Если на тело действует несколько сил, то полная работа (сумма работ всех сил) равна работе результирующей силы.

A = F1r| ∆r|+F2r|∆r| +…=A1+A2+… .

В Международной системе единиц работа измеряется в джоулях (Дж)

1 Дж = 1 Н·1 м = 1 Н·м

Джоуль – это работа, совершаемая силой 1 Н на перемещение 1 м, если направления силы и перемещения совпадают.

Мощностью называют отношение работы А к интервалу времени ∆t, за который эта работа совершена. N = A/∆t

Если мы в формулу мощности подставим формулу работы, то получится, что мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между напр

Включайся в дискуссию
Читайте также
Пенне ригате со свиной вырезкой
Винегрет калорийность и полезные свойства Чем полезен винегрет для организма человека
Запеканка творожная с черникой рецепт в духовке Рецепт творожной запеканки с черникой