Подпишись и читай
самые интересные
статьи первым!

Производная по определению (через предел). Примеры решений

Понятие производной

Пусть функция f (x ) определена на некотором промежутке X. Придадим значению аргумента в точке x 0 Х произволь­ное приращение Δx так, чтобы точка x 0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f (x 0 + Δx ) - f (x 0 ).

Определение 1. Производной функции f(x) в точке x 0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у" (x 0 ) или f "(x 0 ):

Если в некоторой точке x 0 предел (4.1) бесконечен:

то говорят, что в точке x 0 функция f (x ) имеет бесконечную производную.

Если функция f (x ) имеет производную в каждой точке мно­жества X, то производная f"(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f (x ) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f (x ).

Пусть точка М на кривой f (x ) соответствует значению ар­гумента x 0 , а точка N - значению аргумента x 0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x 0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx . Из треугольника MNA следует, что

Если производная функции f (x ) в точке x 0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f "(x 0 ) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f (x ) в точке М (x 0 , f (x 0 )). При этомуголнаклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f (t ) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) - это путь, пройденный за интервал времени Δt , а отношение Δl t - средняя скорость за время Δt . Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f "(x ), тем больше угол наклона касательной к кривой, тем круче график f (x ) и быстрее растет функция.



Правая и левая производные

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x 0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f (x ) имеет в точке x 0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f (x ) = |x |. Действительно, в точке х = 0 имеем f’ + (0) = 1, f" - (0) = -1 (рис. 4.2) и f’ + (0) ≠ f’ - (0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x 0 , то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f (x ), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x |; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М (x 0 , у 0 ) с угловым коэффициентом k имеет вид

Пусть задана функция у = f (x ). Тогда посколькуее произ­водная в некоторой точке М (x 0 , у 0 ) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f (x ) в этой точке имеет вид

Найти выражение для производной экспоненциальной функции \(y = {e^x}\), пользуясь определением производной.

Решение.

Начальные шаги являются стандартными: сначала запишем приращение функции \(\Delta y\), соответствующее приращению аргумента \(\Delta x\): \[ {\Delta y = y\left({x + \Delta x} \right) - y\left(x \right) } = {{e^{x + \Delta x}} - {e^x} } = {{e^x}{e^{\Delta x}} - {e^x} } = {{e^x}\left({{e^{\Delta x}} - 1} \right).} \] Производная вычисляется как предел отношения приращений: \[ {y"\left(x \right) = \lim\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^x}\left({{e^{\Delta x}} - 1} \right)}}{{\Delta x}}.} \] Функция \(y = {e^x}\) в числителе не зависит от Δx и ее можно вынести за знак предела. Тогда производная принимает такой вид: \[ {y"\left(x \right) = {\left({{e^x}} \right)^\prime } } = {{e^x}\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}}.} \] Обозначим полученный предел через \(L\) и вычислим его отдельно. Заметим попутно, что \({e^0} = 1\) и, поэтому, можно записать \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - {e^0}}}{{\Delta x}} = e"\left(0 \right),} \] то есть данный предел представляет собой значение производной показательной функции в нуле. Следовательно, \ Мы получили соотношение, в котором искомая производная выражается через саму функцию \(y = {e^x}\) и ее производную в точке \(x = 0\). Докажем, что \ Для этого вспомним, что число \(e\) определяется в виде бесконечного предела как \ а число \(e\) в степени \(\Delta x\) будет, соответственно, равно \[{e^{\Delta x}} = \lim\limits_{n \to \infty } {\left({1 + \frac{{\Delta x}}{n}} \right)^n}.\] Далее применим знаменитую формулу бинома Ньютона и разложим выражение под знаком предела в биномиальный ряд : \[{\left({1 + \frac{{\Delta x}}{n}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} .\] Здесь \({C_n^k}\) обозначает число сочетаний из \(n\) элементов по \(k\). В европейских и американских учебниках число сочетаний обозначается как \ Вернемся к нашему пределу \(L\), который теперь можно записать в таком виде: \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}}.} \] Нам удобно в биномиальном ряде выделить первые два слагаемых: при \(k = 0\) и \(k = 1\). В результате получаем \[ {L = \lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {C_n^0{{\left({\frac{{\Delta x}}{n}} \right)}^0} + C_n^1{{\left({\frac{{\Delta x}}{n}} \right)}^1} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {1 + n \cdot \frac{{\Delta x}}{n} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\Delta x + \lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} }}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \left[ {1 + \frac{1}{{\Delta x}}\lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] } = {1 + \lim\limits_{n \to \infty } \left[ {\lim\limits_{\Delta x \to 0} \left({\sum\limits_{k = 2}^n {C_n^k\frac{{{{\left({\Delta x} \right)}^{k - 1}}}}{{{n^k}}}} } \right)} \right].} \] Очевидно, что сумма ряда стремится к нулю при \(\Delta x \to 0\). Поэтому, \(L = 1\). Это означает, что производная экспоненциальной функции \(y = {e^x}\) равна самой функции: \

Не всегда в жизни нас интересуют точные значения каких-либо величин. Иногда интересно узнать изменение этой величины, например, средняя скорость автобуса, отношение величины перемещения к промежутку времени и т.д. Для сравнения значения функции в некоторой точке со значениями этой же функции в других точках, удобно использовать такие понятия, как «приращение функции» и «приращение аргумента».

Понятия "приращение функции" и "приращение аргумента"

Допустим, х - некоторая произвольная точка, которая лежит в какой-либо окрестности точки х0. Приращением аргумента в точке х0 называется разность х-х0. Обозначается приращение следующим образом: ∆х.

  • ∆х=х-х0.

Иногда эту величину еще называют приращением независимой переменной в точке х0. Из формулы следует: х = х0+∆х. В таких случаях говорят, что начальное значение независимой переменной х0, получило приращение ∆х.

Если мы изменяем аргумент, то и значение функции тоже будет изменяться.

  • f(x) - f(x0) = f(x0 + ∆х) - f(x0).

Приращением функции f в точке x0, соответствующим приращению ∆х называется разность f(x0 + ∆х) - f(x0). Приращение функции обозначается следующим образом ∆f. Таким образом получаем, по определению:

  • ∆f= f(x0 +∆x) - f(x0).

Иногда, ∆f еще называют приращением зависимой переменной и для обозначения используют ∆у, если функция была, к примеру, у=f(x).

Геометрический смысл приращения

Посмотрите на следующий рисунок.

Как видите, приращение показывает изменение ординаты и абсциссы точки. А отношение приращения функции к приращению аргумента определяет угол наклона секущей, проходящей через начальное и конечное положение точки.

Рассмотрим примеры приращения функции и аргумента

Пример 1. Найти приращение аргумента ∆х и приращение функции ∆f в точке х0, если f(х) = х 2 , x0=2 a) x=1.9 b) x =2.1

Воспользуемся формулами, приведенными выше:

a) ∆х=х-х0 = 1.9 - 2 = -0.1;

  • ∆f=f(1.9) - f(2) = 1.9 2 - 2 2 = -0.39;

b) ∆x=x-x0=2.1-2=0.1;

  • ∆f=f(2.1) - f(2) = 2.1 2 - 2 2 = 0.41.

Пример 2. Вычислить приращение ∆f для функции f(x) = 1/x в точке х0, если приращение аргумента равняется ∆х.

Опять же, воспользуемся формулами, полученными выше.

  • ∆f = f(x0 + ∆x) - f(x0) =1/(x0-∆x) - 1/x0 = (x0 - (x0+∆x))/(x0*(x0+∆x)) = -∆x/((x0*(x0+∆x)).

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования :

  1. Вынос константы за знак производной: $$ (Cu)" = C(u)" $$
  2. Производная суммы /разности функций: $$ (u \pm v)" = (u)" \pm (v)" $$
  3. Производная произведения двух функций: $$ (u \cdot v)" = u"v + uv" $$
  4. Производная дроби : $$ \bigg (\frac{u}{v} \bigg)" = \frac{u"v - uv"}{v^2} $$
  5. Производная сложной функции : $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$

Примеры решения

Пример 1
Найти производную функции $ y = x^3 - 2x^2 + 7x - 1 $
Решение

Производная суммы/разности функций равна сумме/разности производных:

$$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$

Используя правило производной степенной функции $ (x^p)" = px^{p-1} $ имеем:

$$ y" = 3x^{3-1} - 2 \cdot 2 x^{2-1} + 7 - 0 = 3x^2 - 4x + 7 $$

Так же было учтено, что производная от константы равна нулю.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y" = 3x^2 - 4x + 7 $$
Включайся в дискуссию
Читайте также
Святые болевшие онкологией
Молитва чтобы замуж дочь вышла удачна
Житие святого сергия радонежского подробное