Подпишись и читай
самые интересные
статьи первым!

Чем определяются прямолинейность и криволинейность движения тела. Прямолинейное движение и движение по окружности материальной точки

Механическое движение. Относительность механического движения. Система отсчета

Под механическим движением понимают изменение с течением времени взаимного расположения тел или их частей в пространстве: например, движение небесных тел, колебания земной коры, воздушные и морские течения, движение летательных аппаратов и транспортных средств, машин и механизмов, деформации элементов конструкций и сооружений, движение жидкостей и газов и др.

Относительность механического движения

С относительностью механического движения мы знакомы с детства. Так, сидя в поезде и наблюдая за трогающимся с места поездом, стоявшим до этого на параллельном пути, мы часто не можем определить, какой из поездов на самом деле начал двигаться. И здесь сразу следует уточнить: двигаться относительно чего? Относительно Земли, конечно. Потому что относительно соседнего поезда мы начали двигаться независимо от того, какой из поездов начал свое движение относительно Земли.

Относительность механического движения заключается в относительности скоростей перемещения тел: скорости тел относительно разных систем отсчета будут различны (скорость человека, перемещающегося в поезде, пароходе, самолете, будет отличаться как по величине, так и по направлению, в зависимости от того, в какой системе отсчета эти скорости определяются: в системе отсчета, связанной с движущимся транспортным средством, или с неподвижной Землей).

Различными будут и траектории движения тела в разных системах отсчета. Так, например, вертикально падающие на землю капли дождя оставят след в виде косых струй на окне вагона мчащегося поезда. Точно также любая точка на вращающемся пропеллере летящего самолета или спускающегося на землю вертолета описывает окружность относительно самолета и гораздо более сложную кривую - винтовую линию относительно Земли. Таким образом, при механическом движении относительной является также и траектория движения.

Путь, пройденный телом, также зависит от системы отсчета. Возвращаясь все к тому же пассажиру, сидящему в поезде, мы понимаем, что путь, проделанный им относительно поезда за время поездки, равен нулю (если он не передвигался по вагону) или, во всяком случае, намного меньше того пути, который он преодолел вместе с поездом относительно Земли. Таким образом, при механическом движении относительным является также и путь.

Осознание относительности механического движения (т. е. того, что движение тела можно рассматривать в разных системах отсчета) привело к переходу от геоцентрической системы мира Птолемея к гелиоцентрической системе Коперника. Птолемей, следуя наблюдаемому издревле движению Солнца и звезд на небосклоне, в центре Вселенной расположил неподвижную Землю с вращающимися вокруг нее остальными небесными телами. Коперник же считал, что Земля и другие планеты вращаются вокруг Солнца и одновременно вокруг своих осей.

Таким образом, изменение системы отсчета (Земля - в геоцентрической системе мира и Солнце - в гелиоцентрической) привело к гораздо более прогрессивной гелиоцентрической системе, позволяющей решить многие научные и прикладные задачи астрономии и изменить взгляды человечества на Вселенную.

Система координат $X, У, Z$, тело отсчета, с которым она связана, и прибор для измерения времени (часы) образуют систему отсчета, относительно которой рассматривается движение тела.

Телом отсчета называется тело, относительно которого рассматривается изменение положения других тел в пространстве.

Систему отсчета можно выбрать произвольно. При кинематических исследованиях все системы отсчета равноправны. В задачах динамики также можно использовать любые произвольно движущиеся системы отсчета, но удобнее всего инерциальные системы отсчета, так как в них характеристики движения имеют более простой вид.

Материальная точка

Материальная точка - объект пренебрежимо малых размеров, имеющий массу.

Понятие «материальная точка» вводится для описания (с помощью математических формул) механического движения тел. Делается это потому, что описывать движение точки проще, чем реального тела, частицы которого к тому же могут двигаться с разными скоростями (например, при вращении тела или деформациях).

Если реальное тело заменяют материальной точкой, то этой точке приписывают массу этого тела, но пренебрегают его размерами, а заодно пренебрегают различием характеристик движения его точек (скоростей, ускорений и т. д.), если таковое имеется. В каких случаях это можно делать?

Практически любое тело можно рассматривать как материальную точку, если расстояния, проходимые точками тела, очень велики по сравнению с его размерами.

Например, материальными точками считают Землю и другие планеты при изучении их движения вокруг Солнца. В данном случае различия в движении различных точек любой планеты, вызванные ее суточным вращением, не влияют на величины, описывающие годовое движение.

Следовательно, если в изучаемом движении тела можно пренебречь его вращением вокруг оси, такое тело можно представить как материальную точку.

Однако при решении задач, связанных с суточным вращением планет (например, при определении восхода Солнца в разных местах поверхности земного шара), считать планету материальной точкой бессмысленно, так как результат задачи зависит от размеров этой планеты и скорости движения точек ее поверхности.

Материальной точкой правомерно считать самолет, если требуется, например, определить среднюю скорость его движения на пути из Москвы в Новосибирск. Но при вычислении силы сопротивления воздуха, действующей на летящий самолет, считать его материальной точкой нельзя, поскольку сила сопротивления зависит от размеров и формы самолета.

Если тело движется поступательно, даже если его размеры сопоставимы с расстояниями, которые оно проходит, это тело можно рассматривать как материальную точку (поскольку все точки тела движутся одинаково).

В заключение можно сказать: тело, размерами которого в условиях рассматриваемой задачи можно пренебречь, можно считать материальной точкой.

Траектория

Траектория - это линия (или, как принято говорить, кривая), которую описывает тело при движении относительно выбранного тела отсчета.

Говорить о траектории имеет смысл лишь в том случае, когда тело можно представить в виде материальной точки.

Траектории могут иметь разную форму. О форме траектории иногда удается судить по-видимому следу, который оставляет движущееся тело, например, летящий самолет или проносящийся в ночном небе метеор.

Форма траектории зависит от выбора тела отсчета. Например, относительно Земли траектория движения Луны представляет собой окружность, относительно Солнца - линию более сложной формы.

При изучении механического движения в качестве тела отсчета, как правило, рассматривается Земля.

Способы задания положения точки и описание ее движения

Положение точки в пространстве задается двумя способами: 1) с помощью координат; 2) с помощью радиус-вектора.

Положение точки с помощью координат задается тремя проекциями точки $х, у, z$ на оси декартовой системы координат $ОХ, ОУ, OZ$, связанные с телом отсчета. Для этого из точки А необходимо опустить перпендикуляры на плоскости $YZ$ (координата $х$), $ХZ$ (координата $у$), $ХУ$ (координата $z$) соответственно. Записывается это так: $А(х, у, z)$. Для конкретного случая, $(х=6, у=10.2, z= 4.5$), точка $А$ обозначается $А(6; 10; 4.5)$.

Наоборот, если заданы конкретные значения координат точки в данной системе координат, то для изображения самой точки необходимо отложить значения координат на соответствующие оси ($х$ на ось $ОХ$ и т. д.) и на этих трех взаимно перпендикулярных отрезках построить параллелепипед. Вершина его, противоположная началу координат $О$ и лежащая на диагонали параллелепипеда, и будет искомой точкой $А$.

Если точка движется в пределах некоторой плоскости, то через выбранные на теле отсчета точки достаточно провести две координатные оси: $ОХ$ и $ОУ$. Тогда положение точки на плоскости определяют двумя координатами $х$ и $у$.

Если точка движется вдоль прямой, достаточно задать одну координатную ось ОХ и направить ее вдоль линии движения.

Задание положения точки $А$ с помощью радиус-вектора осуществляется соединением точки $А$ с началом координат $О$. Направленный отрезок $ОА = r↖{→}$ называется радиус-вектором.

Радиус-вектор - это вектор, соединяющий начало отсчета с положением точки в произвольный момент времени.

Точка задана радиус-вектором, если известны его длина (модуль) и направление в пространстве, т. е. значения его проекций $r_x, r_у, r_z$ на оси координат $ОХ, ОY, OZ$, либо углы между радиус-вектором и осями координат. Для случая движения на плоскости имеем:

Здесь $r=|r↖{→}|$ - модуль радиус-вектора $r↖{→}, r_x$ и $r_y$ - его проекции на оси координат, все три величины - скаляры; хжу - координаты точки А.

Последние уравнения демонстрируют связь между координатным и векторным способами задания положения точки.

Вектор $r↖{→}$ можно также разложить на составляющие по осям $Х$ и $Y$, т. е. представить в виде суммы двух векторов:

$r↖{→}=r↖{→}_x+r↖{→}_y$

Таким образом, положение точки в пространстве задается либо ее координатами, либо радиус-вектором.

Способы описания движения точки

В соответствии со способами задания координат движение точки можно описать: 1) координатным способом; 2) векторным способом.

При координатном способе описания (или задания) движения изменение координат точки со временем записывается в виде функций всех трех ее координат от времени:

Уравнения называют кинематическими уравнениями движения точки, записанными в координатной форме. Зная кинематические уравнения движения и начальные условия (т. е. положение точки в начальный момент времени), можно определить положение точки в любой момент времени.

При векторном способе описания движения точки изменение ее положения со временем задается зависимостью радиус-вектора от времени:

$r↖{→}=r↖{→}(t)$

Уравнение представляет собой уравнение движения точки, записанное в векторной форме. Если оно известно, то для любого момента времени можно рассчитать радиус-вектор точки, т. е. определить ее положение (как и в случае координатного способа). Таким образом, задание трех скалярных уравнений равносильно заданию одного векторного уравнения.

Для каждого случая движения вид уравнений будет вполне определенным. Если траекторией движения точки является прямая линия, движение называется прямолинейным, а если кривая - криволинейным.

Перемещение и путь

Перемещение в механике - это вектор, соединяющий положения движущейся точки в начале и в конце некоторого промежутка времени.

Понятие вектора перемещения вводится для решения задачи кинематики - определить положение тела (точки) в пространстве в данный момент времени, если известно его начальное положение.

На рис. вектор ${М_1М_2}↖{-}$ соединяет два положения движущейся точки - $М_1$ и $М_2$ в моменты времени $t_1$ и $t_2$ соответственно и, согласно определению, является вектором перемещения. Если точка $М_1$ задана радиус-вектором $r↖{→}_1$, а точка $М_2$ - радиус-вектором $r↖{→}_2$, то, как видно из рисунка, вектор перемещения равен разности этих двух векторов, т. е. изменению радиус-вектора за время $∆t=t_2-t_1$:

$∆r↖{→}=r↖{→}_2-r↖{→}_1$.

Сложение перемещений (например, на двух соседних участках траектории) $∆r↖{→}_1$ и $∆r↖{→}_2$ осуществляется по правилу сложения векторов:

$∆r=∆r↖{→}_2+∆r↖{→}_1$

Путь - это длина участка траектории, пройденного материальной точкой за данный промежуток времени. Модуль вектора перемещения в общем случае не равен длине пути, пройденного точкой за время $∆t$ (траектория может быть криволинейной, и, кроме того, точка может менять направление движения).

Модуль вектора перемещения равен пути только при прямолинейном движении в одном направлении. Если направление прямолинейного движения меняется, модуль вектора перемещения меньше пути.

При криволинейном движении модуль вектора перемещения также меньше пути, т. к. хорда всегда меньше длины дуги, которую она стягивает.

Скорость материальной точки

Скорость характеризует быстроту, с которой происходят любые изменения в окружающем нас мире (движение материи в пространстве и времени). Движение пешехода по тротуару, полет птицы, распространение звука, радиоволн или света в воздухе, вытекание воды из трубы, движение облаков, испарение воды, нагрев утюга - все эти явления характеризуются определенной скоростью.

При механическом движении тел скорость характеризует не только быстроту, но и направление движения, т. е. является векторной величиной.

Скоростью $υ↖{→}$ точки называется предел отношения перемещения $∆r↖{→}$ к промежутку времени $∆t$, в течение которого это перемещение произошло, при стремлении $∆t$ к нулю (т. е. производной $∆r↖{→}$ по $t$):

$υ↖{→}={lim}↙{∆t→0}{∆r↖{→}}/{∆t}=r↖{→}_1"$

Составляющие вектора скорости по осям $X, Y, Z$ определяются аналогично:

$υ↖{→}_x={lim}↙{∆t→0}{∆x}/{∆t}=x"; υ_y=y"; υ_z=z"$

Определенное таким образом понятие скорости называют также мгновенной скоростью. Это определение скорости справедливо для любых видов движения - от криволинейного неравномерного до прямолинейного равномерного . Когда говорят о скорости при неравномерном движении, под ней понимают именно мгновенную скорость. Из этого определения непосредственно вытекает векторный характер скорости, поскольку перемещение - векторная величина. Вектор мгновенной скорости $υ↖{→}$ всегда направлен по касательной к траектории движения. Он указывает направление, по которому происходило бы движение тела, если бы с момента времени $t$ на него прекратилось действие любых других тел.

Средняя скорость

Средняя скорость точки вводится для характеристики неравномерного движения (т.е. движения с переменной скоростью) и определяется двояко.

1. Средняя скорость точки $υ_{ср}$ равна отношению всего пройденного телом пути $∆s$ ко всему времени движения $∆t$:

$υ↖{→}_{ср}={∆s}/{∆t}$

При таком определении средняя скорость - скаляр, т. к. пройденный путь (расстояние) и время - величины скалярные.

Такой способ определения дает представление о средней скорости движения на участке траектории (средней путевой скорости).

2. Средняя скорость точки равна отношению перемещения точки к промежутку времени, в течение которого это перемещение произошло:

$υ↖{→}_{ср}={∆r↖{→}}/{∆t}$

Средняя скорость перемещения - величина векторная.

Для неравномерного криволинейного движения такое определение средней скорости не всегда позволяет определить даже приблизительно реальные скорости на пути движения точки. Например, если точка двигалась по замкнутой траектории в течение некоторого времени, то перемещение ее равно нулю (но скорость явно отличалась от нуля). В этом случае лучше пользоваться первым определением средней скорости.

В любом случае следует различать эти два определения средней скорости и знать, о какой из них идет речь.

Закон сложения скоростей

Закон сложения скоростей устанавливает связь между значениями скорости материальной точки относительно различных систем отсчета, движущихся друг относительно друга. В нерелятивистской (классической) физике, когда рассматриваемые скорости малы по сравнению со скоростью света, справедлив закон сложения скоростей Галилея, который выражается формулой:

$υ↖{→}_2=υ↖{→}_1+υ↖{→}$

где $υ↖{→}_2$ и $υ↖{→}_1$ - скорости тела (точки) относительно двух инерциальных систем отсчета - неподвижной системы отсчета $K_2$ и системы отсчета $K_1$ движущейся со скоростью $υ↖{→}$ относительно $K_2$.

Формула может быть получена путем сложения векторов перемещений.

Для наглядности рассмотрим движение лодки со скоростью $υ↖{→}_1$ относительно реки (система отсчета $K_1$), воды которой движутся со скоростью $υ↖{→}$ относительно берега (система отсчета $K_2$).

Векторы перемещений лодки относительно воды $∆r↖{→}_1$, реки относительно берега $∆r↖{→}$ и суммарный вектор перемещения лодки относительно берега $∆r↖{→}_2$ изображены на рис..

Математически:

$∆r↖{→}_2=∆r↖{→}_1+∆r↖{→}$

Поделив обе части уравнения на интервал времени $∆t$, получим:

${∆r↖{→}_2}/{∆t}={∆r↖{→}_1}/{∆t}+{∆r↖{→}}/{∆t}$

В проекциях вектора скорости на оси координат уравнение имеет вид:

$υ_{2x}=υ_{1x}+υ_x,$

$υ_{2y}=υ_{1y}+υ_y.$

Проекции скоростей складываются алгебраически.

Относительная скорость

Из закона сложения скоростей следует, что если два тела движутся в одной и той же системе отсчета со скоростями $υ↖{→}_1$ и $υ↖{→}_2$, то скорость первого тела относительно второго $υ↖{→}_{12}$ равна разности скоростей этих тел:

$υ↖{→}_{12}=υ↖{→}_1-υ↖{→}_2$

Так, при движении тел в одном направлении (обгон) модуль относительной скорости равен разности скоростей, а при встречном движении - сумме скоростей.

Ускорение материальной точки

Ускорение - величина, характеризующая быстроту изменения скорости. Как правило, движение является неравномерным, т. е. происходит с переменной скоростью. На одних участках траектории тела могут иметь большую скорость, на других - меньшую. Например, поезд, отходящий от станции, со временем двигается все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Ускорение (или мгновенное ускорение) - векторная физическая величина, равная пределу отношения изменения скорости к промежутку времени, за который это изменение произошло, при стремлении $∆t$ к нулю, (т. е. производной $υ↖{→}$ по $t$):

$a↖{→}=lim↙{∆t→0}{∆υ↖{→}}/{∆t}=υ↖{→}_t"$

Составляющие $a↖{→} (а_х, а_у, а_z)$ равны соответственно:

$a_x=υ_x";a_y=υ_y";a_z=υ_z"$

Ускорение, как и изменение скорости, направлено в сторону вогнутости траектории и может быть разложено на две составляющие - тангенциальную - по касательной к траектории движения - и нормальную - перпендикулярно к траектории.

В соответствии с этим проекцию ускорения $а_х$ на касательную к траектории называют касательным , или тангенциальным ускорением, проекцию $a_n$ на нормаль - нормальным , или центростремительным ускорением .

Касательное ускорение определяет величину изменения численного значения скорости:

$a_t=lim↙{∆t→0}{∆υ}/{∆t}$

Нормальное, или центростремительное ускорение характеризует изменение направления скорости и определяется по формуле:

где R - радиус кривизны траектории в соответствующей ее точке.

Модуль ускорения определяется по формуле:

$a=√{a_t^2+a_n^2}$

При прямолинейном движении полное ускорение $а$ равно тангенциальному $a=a_t$, т. к. центростремительное $a_n=0$.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с. Эту единицу обозначают 1 м/с 2 и называют «метр на секунду в квадрате».

Равномерное прямолинейное движение

Движение точки называется равномерным, если за любые равные промежутки времени она проходит равные пути.

Например, если автомобиль за каждую четверть часа (15 мин) проходит 20 км, за каждые полчаса (30 мин) - 40 км, за каждый час (60 мин) - 80 км и т. д., то такое движение считается равномерным. При равномерном движении численная величина (модуль) скорости точки $υ$ - величина постоянная:

$υ=|υ↖{→}|=const$

Равномерное движение может происходить как по криволинейной, так и по прямолинейной траектории.

Закон равномерного движения точки описывается уравнением:

где $s$ - расстояние, измеренное вдоль дуги траектории, от некоторой точки на траектории, принятой за начало отсчета; $t$ - время точки в пути; $s_0$ - значение $s$ в начальный момент времени $t=0$.

Путь, пройденный точкой за время $t$, определяется слагаемым $υt$.

Равномерное прямолинейное движение - это движение, при котором тело перемещается с постоянной по модулю и направлению скоростью:

$υ↖{→}=const$

Скорость равномерного прямолинейного движения - величина постоянная и может быть определена как отношение перемещения точки к промежутку времени, в течение которого это перемещение произошло:

$υ↖{→}={∆r↖{→}}/{∆t}$

Модуль этой скорости

$υ={|∆r↖{→}|}/{∆t}$

по смыслу есть расстояние $s=|∆r↖{→}|$, пройденное точкой за время $∆t$.

Скорость тела при равномерном прямолинейном движении - это величина, равная отношению пути $s$ ко времени, за которое этот путь пройден:

Перемещение при прямолинейном равномерном движении (по оси X) можно рассчитать по формуле:

где $υ_x$ - проекция скорости на ось X. Отсюда закон прямолинейного равномерного движения имеет вид:

Если в начальный момент времени $x_0=0$, то

График зависимости скорости от времени - прямая, параллельная оси абсцисс, а пройденный путь - это площадь под этой прямой.

График зависимости пути от времени - прямая линия, угол наклона которой к оси времени $Ot$ тем больше, чем больше скорость равномерного движения. Тангенс этого угла равен скорости.

Прямолинейное движение
Известно, что тело двигается под действием приложенной к нему силы. Можно проделать несложный эксперимент, показывающий, как направление движения тела будет зависеть от направления приложенной к нему силы. Для этого потребуется произвольный предмет небольшого размера, резиновый шнур и горизонтальная или вертикальная опора.

Привязывает шнур одним концом к опоре. На другом конце шнура закрепляем наш предмет. Теперь, если мы оттянем наш предмет на некоторое расстояние, а потом отпустим, то увидим, как он начнет двигаться в направлении опоры. Его движение обусловлено силой упругости шнура. Именно так Земля притягивает все тела на ее поверхности, а также летящие из космоса метеориты.

Только вместо силы упругости выступает сила притяжения. А теперь возьмем наш предмет на резинке и толкнем его не в направлении к/от опоры, а вдоль нее. Если бы предмет не был закреплен, он бы просто улетел в сторону. Но так как его держит шнур, то шарик, двигаясь в сторону, слегка растягивает шнур, тот тянет его обратно, и шарик чуть меняет свое направление в сторону опоры.

Криволинейное движение по окружности
Так происходит в каждый момент времени, в итоге шарик движется не по первоначальной траектории, но и не прямолинейно к опоре. Шарик будет двигаться вокруг опоры по окружности. Траектория его движения будет криволинейной. Именно так вокруг Земли двигается Луна, не падая на нее.

Именно так притяжение Земли захватывает метеориты, которые летят близко от Земли, но не прямо на нее. Эти метеориты становятся спутниками Земли. При этом от того, каким был их первоначальный угол движения по отношению к Земле, зависит, как долго они пробудут на орбите. Если их движение было перпендикулярно Земле, то они могут находиться на орбите бесконечно долго. Если же угол был меньше 90˚, то они будут двигаться по снижающейся спирали, и постепенно все-таки упадут на землю.

Движение по окружности с постоянной по модулю скоростью
Еще один момент, который следует отметить, это то, что скорость криволинейного движения по окружности меняется по направлению, но одинакова по значению. А это означает, что движение по окружности с постоянной по модулю скоростью происходит равноускорено.

Так как направление движения меняется, значит, движение происходит с ускорением. А так как оно меняется одинаково в каждый момент времени, следовательно, движение будет равноускоренным. А сила притяжения является силой, которая обусловливает постоянное ускорение.

Луна двигается вокруг Земли именно благодаря этому, но если вдруг когда-либо движение Луны изменится, например, в нее врежется очень крупный метеорит, то она вполне может сойти со своей орбиты и упасть на Землю. Нам остается лишь надеяться, что этот момент не наступит никогда. Такие дела.

https://accounts.google.com


Подписи к слайдам:

Подумай и ответь! 1. Какое движение называется равномерным? 2. Что называется скоростью равномерного движения? 3. Какое движение называется равноускоренным? 4. Что такое ускорение тела? 5. Что такое перемещение? Что такое траектория?

Тема урока: Прямолинейное и криволинейное движение. Движение тела по окружности.

Механические движения Прямолинейное Криволинейное Движение по эллипсу Движение по параболе Движение по гиперболе Движение по окружности

Цели урока: 1. Знать основные характеристики криволинейного движения и связь между ними. 2. Уметь применять полученные знания при решении экспериментальных задач.

План изучения темы Изучение нового материала Условие прямолинейного и криволинейного движения Направление скорости тела при криволинейном движении Центростремительное ускорение Период обращения Частота обращения Центростремительная сила Выполнение фронтальных экспериментальных заданий Самостоятельная работа в форме тестов Подведение итогов

По виду траектории движение бывает: Криволинейное Прямолинейное

Условия прямолинейного и криволинейного движения тел (Опыт с шариком)

стр.67 Запомнить! Работа с учебником

Движение по окружности – частный случай криволинейного движения

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Характеристики движения – линейная скорость криволинейного движения () – центростремительное ускорение () – период обращения () – частота обращения ()

Запомнить. Направления движения частиц совпадает с касательной к окружности

При криволинейном движении скорость тела направлена по касательной к окружности Запомнить.

При криволинейном движении ускорение направлено к центру окружности Запомнить.

Почему ускорение направлено к центру окружности?

Определение скорости - скорость - период обращения r - радиус окружности

При движении тела по окружности модуль вектора скорости может меняться или оставаться постоянным, но направление вектора скорости обязательно меняется. Поэтому вектор скорости является величиной переменной. Значит движение по окружности всегда происходит с ускорением. Запомнить!

Предварительный просмотр:

Тема: Прямолинейное и криволинейное движение. Движение тела по окружности.

Цели: Изучить особенности криволинейного движения и, в частности, движения по окружности.

Ввести понятие центростремительного ускорения и центростремительной силы.

Продолжить работу по формированию ключевых компетенций учащихся: умения сравнивать, анализировать, делать выводы из наблюдений, обобщать опытные данные на основе имеющихся знаний о движении тела формировать умения использовать основные понятия, формулы и физические законы движения тела при движении на окружности.

Воспитывать самостоятельность, учить детей сотрудничеству, воспитывать уважение к мнению других, пробуждать любознательность и наблюдательность.

Оборудование урока: компьютер, мультемедийный проектор, экран, шарик на резинке, шарик на нити, линейка, метроном, юла.

Оформление: «Мы истинно свободны, когда сохранили способность рассуждать самостоятельно». Цецерон.

Вид урока: урок изучения нового материала.

Ход урока:

Организационный момент:

Постановка проблемы: Какие виды движений мы изучили?

(Ответ: Прямолинейное равномерное, прямолинейное равноускоренное.)

План урока:

  1. Актуализация опорных знаний (физическая разминка) (5 мин)
  1. Какое движение называется равномерным?
  2. Что называется скоростью равномерного движения?
  3. Какое движение называется равноускоренным?
  4. Что такое ускорение тела?
  5. Что такое перемещение? Что такое траектория?
  1. Основная часть. Изучение нового материала. (11 мин)
  1. Постановка проблемы:

Задание учащимся: Рассмотрим вращение юлы, вращение шарика на нити (демонстрация опыта). Как можно охарактеризовать их движения? Что общего в их движении?

Учитель: Значит, наша задача на сегодняшнем уроке ввести понятие прямолинейного и криволинейного движения. Движения тела по окружности.

(запись темы урока в тетрадях).

  1. Тема урока .

Слайд № 2.

Учитель: Для постановки целей я предлагаю проанализировать схему механического движения. (виды движения, научность)

Слайд № 3.

  1. Какие цели к нашей теме поставим?

Слайд № 4.

  1. Я предлагаю изучить эту тему по следующему плану . (Выделить основное)

Вы согласны?

Слайд № 5.

  1. Взгляните на рисунок. Рассмотрите примеры видов траекторий, встречающихся в природе и технике.

Слайд № 6.

  1. Действие на тело силы в одних случаях может привести только к изменению модуля вектора скорости этого тела, а в других – к изменению направления скорости. Покажем это на опытах.

(Проведение опытов с шариком на резинке)

Слайд № 7

  1. Сделайте вывод от чего зависит вид траектории движения.

(Ответ)

А теперь сравним данное определение с тем, которое дается в вашем учебнике на стр. 67

Слайд № 8.

  1. Рассмотрим рисунок. Как можно связать криволинейное движение с движением по окружности.

(Ответ)

То есть кривую линию можно переставить в виде совокупности дуг окружностей разных диаметров.

Сделаем вывод :…

(Записать в тетрадь)

Слайд № 9.

  1. Рассмотрим какие физические величины характеризуют движение по окружности.

Слайд № 10.

  1. Рассмотрим пример движения автомобиля. Что вылетает из под колес? Как она движется? Как направлены частицы? Чем защищаются от действия этих частиц?

(Ответ)

Сделаем вывод : …(о характере движения частиц)

Слайд № 11

  1. Давайте рассмотрим как направлена скорость при движении тела по окружности. (Анимация с лошадкой.)

Сделаем вывод : …(как направлена скорость.)

Слайд № 12.

  1. Выясним, как направлено ускорение при криволинейно движении, которое появляется здесь в связи с тем, что происходит изменение скорости по направлению.

(Анимация с мотоциклистом.)

Сделаем вывод : …(как направлено ускорение)

Запишем формулу в тетрадь.

Слайд № 13.

  1. Рассмотрите рисунок. Сейчас мы выясним почему ускорение направлено к центру окружности.

(объяснение учителя)

Слайд № 14.

Какие выводы можно сделать о направлении скорости и ускорения?

  1. Существуют и другие характеристики криволинейного движения. К ним относятся период и частота обращения тела по окружности. Скорость и период связаны соотношением, которую установим математически:

(Учитель пишет на доске, учащиеся делают запись в тетрадях)

Известно , а путь , то .

Так как , то

Слайд № 15.

  1. Какой же общий вывод моно сделать о характере движения по окружности?

(Ответ)

Слайд № 16. ,

  1. По II закону Ньютона ускорение всегда сонаправлено с силой, в результате действия которой оно возникает. Это справедливо и для центростремительного ускорения.

Давайте сделаем вывод : Как же направлена сила в каждой точке траектории?

(ответ)

Такая сила называется центростремительной.

Запишем формулу в тетрадь.

(Учитель пишет на доске, учащиеся делают запись в тетрадях)

Центростремительная сила создается всеми силами природы.

Приведите примеры действия центростремительных сил по их природе:

  • сила упругости (камень на веревке);
  • сила тяготения (планеты вокруг солнца);
  • сила трения (движение на поворотах).

Слайд № 17 .

  1. Для закрепления я предлагаю провести эксперимент. Для этого создадим три группы.

I группа установит зависимость скорости от радиуса окружности.

II группа измерит ускорение при движении по окружности.

III группа установит зависимость центростремительного ускорения от числа оборотов в единицу времени.

Слайд № 18.

Подведение итогов . Как зависит скорость и ускорение от радиуса окружности?

  1. Проведем тестирование для первичного закрепления. (7 мин)

Слайд № 19.

  1. Оцените свою работу на уроке. Продолжите предложения на листочках.

(Рефлексия. Отдельные ответы учащиеся озвучивают вслух.)

Слайд № 20.

  1. Домашнее задание: §18-19,

Упр. 18 (1, 2)

Дополнительно упр. 18 (5)

(Учитель комментирует)

Слайд № 21.


В зависимости от формы траектории движение можно подразделять на прямолинейное и криволинейное. Чаще всего можно столкнуться с криволинейными движениями, когда траектория представлена в виде кривой. Примером такого вида движения является путь тела, брошенного под углом к горизонту, движение Земли вокруг Солнца, планет и так далее.

Рисунок 1 . Траектория и перемещение при криволинейном движении

Определение 1

Криволинейным движением называют движение, траектория которого представляет собой кривую линию. Если тело движется по криволинейной траектории, то вектор перемещения s → направлен по хорде, как показано на рисунке 1 , а l является длиной траектории. Направление мгновенной скорости движения тела идет по касательной в той же точке траектории, где в данный момент располагается движущийся объект, как показано на рисунке 2 .

Рисунок 2 . Мгновенная скорость при криволинейном движении

Определение 2

Криволинейное движение материальной точки называют равномерным тогда, когда модуль скорости постоянный (движение по окружности), и равноускоренным при изменяющемся направлении и модуле скорости (движение брошенного тела).

Криволинейное движение всегда ускоренное. Это объясняется тем, что даже при неизмененном модуле скорости, а измененном направлении, всегда присутствует ускорение.

Для того чтобы исследовать криволинейное движение материальной точки, применяют два метода.

Путь разбивается на отдельные участки, на каждом из которых его можно считать прямолинейным, как показано на рисунке 3 .

Рисунок 3 . Разбиение криволинейного движения на поступательные

Теперь для каждого участка можно применять закон прямолинейного движения. Такой принцип допускается.

Самым удобным методом решения считается представление пути в качестве совокупности нескольких движений по дугам окружностей, как показано на рисунке 4 . Количество разбиений будет намного меньше, чем в предыдущем методе, кроме того, движение по окружности уже является криволинейным.

Рисунок 4 . Разбиение криволинейного движения на движения по дугам окружностей

Замечание 1

Для записи криволинейного движения необходимо уметь описывать движение по окружности, произвольное движение представлять в виде совокупностей движений по дугам этих окружностей.

Исследование криволинейного движения включает в себя составление кинематического уравнения, которое описывает это движение и позволяет по имеющимся начальным условиям определить все характеристики движения.

Пример 1

Дана материальная точка, движущаяся по кривой, как показано на рисунке 4 . Центры окружностей O 1 , O 2 , O 3 располагаются на одной прямой. Необходимо найти перемещение
s → и длину пути l во время движения из точки А в В.

Решение

По условию имеем, что центры окружности принадлежат одной прямой, отсюда:

s → = R 1 + 2 R 2 + R 3 .

Так как траектория движения – это сумма полуокружностей, то:

l ~ A B = π R 1 + R 2 + R 3 .

Ответ: s → = R 1 + 2 R 2 + R 3 , l ~ A B = π R 1 + R 2 + R 3 .

Пример 2

Дана зависимость пройденного телом пути от времени, представленная уравнением s (t) = A + B t + C t 2 + D t 3 (C = 0 , 1 м / с 2 , D = 0 , 003 м / с 3) . Вычислить, через какой промежуток времени после начала движения ускорение тела будет равно 2 м / с 2

Решение

Ответ: t = 60 с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Мы знаем, что все тела притягиваются друг к другу. В частности, Луна, например, притягивается к Земле. Но возникает вопрос: если Луна притягивается к Земле, почему она вращается вокруг нее, а не падает на Землю?

Для того чтобы ответить на этот вопрос, необходимо рассмотреть виды движения тел. Мы уже знаем, что движение может быть равномерным и неравномерным , но существуют и другие характеристики движения. В частности, в зависимости от направления различают прямолинейное и криволинейное движение.

Прямолинейное движение

Известно, что тело двигается под действием приложенной к нему силы. Можно проделать несложный эксперимент, показывающий, как направление движения тела будет зависеть от направления приложенной к нему силы. Для этого потребуется произвольный предмет небольшого размера, резиновый шнур и горизонтальная или вертикальная опора.

Привязывает шнур одним концом к опоре. На другом конце шнура закрепляем наш предмет. Теперь, если мы оттянем наш предмет на некоторое расстояние, а потом отпустим, то увидим, как он начнет двигаться в направлении опоры. Его движение обусловлено силой упругости шнура. Именно так Земля притягивает все тела на ее поверхности, а также летящие из космоса метеориты.

Только вместо силы упругости выступает сила притяжения. А теперь возьмем наш предмет на резинке и толкнем его не в направлении к/от опоры, а вдоль нее. Если бы предмет не был закреплен, он бы просто улетел в сторону. Но так как его держит шнур, то шарик, двигаясь в сторону, слегка растягивает шнур, тот тянет его обратно, и шарик чуть меняет свое направление в сторону опоры.

Криволинейное движение по окружности

Так происходит в каждый момент времени, в итоге шарик движется не по первоначальной траектории, но и не прямолинейно к опоре. Шарик будет двигаться вокруг опоры по окружности. Траектория его движения будет криволинейной. Именно так вокруг Земли двигается Луна, не падая на нее.

Именно так притяжение Земли захватывает метеориты, которые летят близко от Земли, но не прямо на нее. Эти метеориты становятся спутниками Земли. При этом от того, каким был их первоначальный угол движения по отношению к Земле, зависит, как долго они пробудут на орбите. Если их движение было перпендикулярно Земле, то они могут находиться на орбите бесконечно долго. Если же угол был меньше 90˚, то они будут двигаться по снижающейся спирали, и постепенно все-таки упадут на землю.

Движение по окружности с постоянной по модулю скоростью

Еще один момент, который следует отметить, это то, что скорость криволинейного движения по окружности меняется по направлению, но одинакова по значению. А это означает, что движение по окружности с постоянной по модулю скоростью происходит равноускорено.

Так как направление движения меняется, значит, движение происходит с ускорением. А так как оно меняется одинаково в каждый момент времени, следовательно, движение будет равноускоренным. А сила притяжения является силой, которая обусловливает постоянное ускорение.

Луна двигается вокруг Земли именно благодаря этому, но если вдруг когда-либо движение Луны изменится, например, в нее врежется очень крупный метеорит, то она вполне может сойти со своей орбиты и упасть на Землю. Нам остается лишь надеяться, что этот момент не наступит никогда. Такие дела.

Включайся в дискуссию
Читайте также
Самые вкусные рецепты блюд из манго: салаты с креветками, пюре, смузи, варенье Простые рецепты с манго
Нас манят разные дороги… О путешествиях в цитатах и афоризмах
Что в действительности дают путешествия человеку?