Подпишись и читай
самые интересные
статьи первым!

Закон джоуля ленца формула и определение. Закон Джоуля-Ленца при передаче электричества на расстояние

В XIX веке независимо друг от друга, англичанин Дж.Джоуль и россиянин Э.Х.Ленц изучали нагревание проводников электрическим током и опытным путём установили закономерность: количество теплоты, выделяющееся в проводнике с током, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока.
Позднее было выяснено, что это утверждение справедливо для любых проводников: твёрдых, жидких, газообразных. Поэтому открытая закономерность получила название закон Джоуля-Ленца:

На рисунке показана схема установки, при помощи которой можно экспериментально проверить закон Джоуля-Ленца. Разделив силу тока на напряжение, по формуле R=U/I вычисляют сопротивление. Термометром измеряют повышение температуры воды. По формулам Q=I2Rt и Q=cm D вычисляют количества теплот, которые по результатам опыта должны совпадать.
Для тех, кто интересуется физикой более глубоко, специально заметим, что закон Джоуля-Ленца можно получить не только экспериментально, но и вывести теоретическим путём. Сделаем это.


Полученная формула A=I2Rt похожа на формулу закона Джоуля-Ленца, однако в левой её части стоит работа тока, а не количество теплоты. Что даёт нам право считать эти величины равными? Запишем первый закон термодинамики (см. § 6-з) и выразим из него работу:
D U = Q + A , следовательно, A = D U - Q .
Вспомним, что D U - это изменение внутренней энергии нагреваемого током проводника; Q - количество теплоты, отданное проводником (на это указывает знак «-» впереди); A - работа, совершённая над проводником. Выясним, что это за работа.
Сам проводник неподвижен, но внутри него движутся электроны, постоянно наталкиваясь на ионы кристаллической решётки и передавая им часть своей кинетической энергии. Чтобы поток электронов не ослабевал, над ними постоянно совершают работу силы электрического поля, создаваемого источником электроэнергии. Поэтому A - работа сил электрического поля по перемещению электронов внутри проводника.
Обсудим теперь величину D U (изменение внутренней энергии) применительно к проводнику, в котором начинает течь ток.
Проводник будет постепенно нагреваться, значит, его внутренняя энергия будет увеличиваться. По мере нагрева будет возрастать разность между температурами проводника и окружающей среды. Согласно закономерности Ньютона (см. § 6-к), будет возрастать мощность теплоотдачи проводника. Через некоторое время это приведёт к тому, что температура проводника перестанет увеличиваться. С этого момента внутренняя энергия проводника перестанет изменяться , то есть величина D U станет равной нулю.
Тогда первый закон термодинамики для этого состояния будет: A = -Q. То есть если внутренняя энергия проводника не меняется, то работа тока полностью превращается в теплоту. Используя этот вывод, запишем все три формулы для вычисления работы тока в другом виде:

Эти формулы мы пока будем считать равноправными. Позднее мы обсудим, что правая формула справедлива всегда (поэтому она и носит название закона), а две левых - только при определённых условиях, которые мы сформулируем при изучении физики в старших классах.

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

Закон Джоуля Ленца в интегральной форме в тонких проводах:

Если сила тока изменяется со временем, проводник неподвижен и химических превращений в нем нет, то в проводнике выделяется тепло.

- Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку; при перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

В формуле мы использовали:

Количество теплоты

Работа тока

Напряжение в проводнике

Сила тока в проводнике

Промежуток времени

Энергия направленного движения заряженных частиц расходуется на нагрев кристаллической решетки проводника.

2. Чему равно количество теплоты, получаемое кристаллической решеткой проводника от направленно движущихся заряженных частиц?

Количество теплоты, которое получила кристаллическая решетка, равно работе электрического тока.

3. Сформулируйте закон Джоуля-Ленца. Запишите его математическое выражение.

Количество теплоты, которое выделилось в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и

времени прохождения тока по проводнику.

4. Дайте определение мощности электрического тока. Приведите формулу для расчета этой мощности.

Мощность электрического тока - работа электрического поля, совершаемая при упорядоченном движении заряженных частиц по проводнику, отнесенная ко времени, за которое эта работа совершается.

5. Как зависит мощность, выделяемая в проводниках с током, от типа их соединения?

Если проводники соединены последовательно, то мощность прямо пропорциональна их сопротивлению. Если параллельно - то мощность обратно пропорциональны их сопротивлению.

Эмилий Христианович Ленц (1804 - 1865) - русский знаменитый физик. Он является одним из основоположников электромеханики. С его именем связано открытие закона, определяющего направление и закона, определяющего электрическое поле в проводнике с током.

Кроме того, Эмилий Ленц и английский учёный-физик Джоуль, изучая на опыте независимо один от другого открыли закон, согласно которому количество теплоты, которое выделяется в проводнике, будет прямо пропорционально квадрату электрического тока, который проходит по проводнику, его сопротивлению и времени, в течение которого электрический ток поддерживается неизменным в проводнике.

Данный закон получил название закон Джоуля - Ленца, формула его выражает следующим образом:

где Q - количество выделившейся теплоты, l - ток, R - сопротивление проводника, t - время; величина k называется тепловым эквивалентом работы. Численное значение этой величины зависит от выбора единиц, в которых производятся измерения остальных величин, входящих в формулу.

Если количество теплоты измерять в калориях, ток в амперах, сопротивление в Омах, а время в секундах, то k численно равно 0,24. Это значит, что ток в 1а выделяет в проводнике, который обладает сопротивлением в 1 Ом, за одну секунду число теплоты, которое равно 0,24 ккал. Исходя из этого, количество теплоты в калориях, выделяющееся в проводнике, может быть рассчитано по формуле:

В системе единиц СИ энергия, количество теплоты и работа измеряются единицами - джоулями. Поэтому коэффициент пропорциональности в законе Джоуля - Ленца равен единице. В этой системе формула Джоуля - Ленца имеет вид:

Закон Джоуля - Ленца можно проверить на опыте. По проволочной спиральке, погружённой в жидкость, налитую в калориметр, пропускается некоторое время ток. Затем подсчитывается количество теплоты, выделившейся в калориметре. Сопротивление спиральки известно заранее, ток измеряется амперметром и время секундомером. Меняя ток в цепи и используя различные спиральки, можно проверить закон Джоуля - Ленца.

На основании закона Ома

Подставляя значение тока в формулу (2), получим новое выражение формулы для закона Джоуля - Ленца:

Формулой Q = l²Rt удобно пользоваться при расчёте количества теплоты, выделяемого при последовательном соединении, потому что в этом случае во всех проводниках одинаков. Поэтому, когда происходит нескольких проводников, в каждом из них будет выделено такое количество теплоты, которое пропорционально сопротивлению проводника. Если соединить, например, последовательно три проволочки одинаковых размеров - медную, железную и никелиновую, то наибольшее количество теплоты будет выделяться из никелиновой, так как её наибольшее, она сильнее и нагревается.

Если то электрический ток в них будет различен, а напряжение на концах таких проводников одно и то же. Расчёт количества теплоты, которое будет выделяться при таком соединении, лучше вести, используя формулу Q = (U²/R)t.

Эта формула показывает, что при параллельном соединении каждый проводник выделит такое количество теплоты, которое будет обратно пропорционально его проводимости.

Если соединить три одинаковой толщины проволоки - медную, железную и никелиновую - параллельно между собой и пропустить через них ток, то наибольшее количество теплоты выделится в она и нагреется сильнее остальных.

Беря за основу закон Джоуля - Ленца, производят расчёт различных электроосветительных установок, отопительных и нагревательных электроприборов. Также широко используется преобразование энергии электричества в тепловую.

Здравствуйте. Закон Джоуля-Ленца вряд ли когда вам потребуется, но он входит в базовый курс электротехники, а потому сейчас я вам об этом законе расскажу.

Закон Джоуля-Ленца открыли два великих ученых независимо друг от друга: в 1841 году Джеймс Прескот Джоуль, английский ученый, который внёс большой вклад в развитие термодинамикии в 1842 году Эмилий Христианович Ленц, русский учёный немецкого происхождения, который внёс большой вклад уже в электротехнику. Поскольку открытие обоих учёных произошло почти одновременно и независимо друг от друга, то закон было решено назвать двойным именем, точнее фамилиями.

Помните, когда , да и не только его, я говорил о том, что электрический ток нагревает проводники, по которым он протекает. Джоуль и Ленц определили формулу, по которой можно вычислить количество выделяемого тепла.

Итак, изначально, формула выглядела следующим образом:

Единицей измерения по этой формуле были калории и за это «отвечал» коэффициент k, который равен 0,24, то есть, формула для получения данных в калориях выглядит так:

Но поскольку в системе измерений СИ в виду большого количества измеряемых величин и избежания путаницы было принято обозначение джоуль, то формула несколько изменилась. k стал равен единице, и поэтому коэффициент больше не стали писать в формуле и она стала выглядеть так:

Здесь: Q – количество выделяемого тепла, измеряемое в Джоулях (обозначение по системе СИ – Дж);

I – ток, измеряемый в Амперах, А;

R – сопротивление, измеряемое в Омах, Ом;

t – время, измеряемое в секундах, с;

и U – напряжение, измеряемое в вольтах, В.

Посмотрите внимательно, не напоминает ли вам чего-нибудь одна часть этой формулы? А конкретно? А ведь это мощность, точнее формула мощности из закона Ома. И если честно, то такого представления закона Джоуля-Ленца я еще не встречал в интернете:

Теперь вспоминаем мнемоническую таблицу и получаем как минимум три формульных выражения закона Джоуля-Ленца, в зависимости от того, какие величины нам известны:

Казалось бы, все очень просто, но так кажется нам, только когда мы уже знаем этот закон, а тогда оба великих учёных открывали его не теоретически, а экспериментальным путём и затем смогли обосновать его теоретически.

Где может пригодиться этот закон Джоуля-Ленца?

В электротехнике есть понятие длительно допустимого тока протекающего по проводам. Это такой ток, который провод способен выдержать длительное время (то есть, бесконечно долго), без разрушения провода (и изоляции, если она есть, потому что провод может быть и без изоляции). Конечно, данные вы теперь можете взять из ПУЭ (Правила устройства электроустановок), но получали эти данные исключительно на основе закона Джоуля-Ленца.

В электротехнике так же используются плавкие предохранители. Их основное качество – надёжность срабатывания. Для этого используется проводник определенного сечения. Зная температуру плавления такого проводника можно вычислить количество теплоты, которое необходимо, чтобы проводник расплавился от протекания через него больших значений тока, а вычислив ток, можно вычислить и сопротивление, которым такой проводник должен обладать. В общем, как вы уже поняли, применяя закон Джоуля-Ленца можно рассчитать сечение или сопротивление (величины взаимозависимы) проводника для плавкого предохранителя.

А ещё, помните, мы говорили про . Там на примере лампочки я рассказывал парадокс, что более мощная лампа в последовательном соединении светит слабее. И наверняка помните почему: падение напряжения на сопротивлении тем сильнее, чем меньше сопротивление. А поскольку мощность — это , а напряжение очень сильно падает, то и выходит, что большое сопротивление выделит большое количество тепла, то есть, току придется больше потрудиться, чтобы преодолеть большое сопротивление. И количество тепла, которое выделит ток при этом можно посчитать с помощью закона Джоуля-Ленца. Если брать последовательное соединение сопротивлений, то использовать лучше выражение через квадрат тока, то есть, изначальный вид формулы:

А для параллельного соединения сопротивлений, поскольку ток в параллельных ветвях зависит от сопротивления, в то время, как напряжение на каждой параллельной ветви одинаковое, то формулу лучше всего представить через напряжение:

Примерами работы закона Джоуля-Ленца вы все пользуетесь в повседневной жизни – в первую очередь это всевозможные нагревательные приборы. Как правило, в них используется нихромовая проволока и толщина (поперечное сечение) и длина проводника подбираются с учётом того, чтобы длительное тепловое воздействие не приводило к стремительному разрушению проволоки. Точно таким же образом добиваются свечения вольфрамовой нити в лампе накаливания. По этому же закону определяют степень возможного нагрева практически любого электротехнического и электронного устройства.

В общем, несмотря на кажущуюся простоту, закон Джоуля-Ленца играет в нашей жизни очень огромную роль. Этот закон дал большой толчок для теоретических расчётов: выделение тепла токами , вычисление конкретной температуры дуги, проводника и любого другого электропроводного материала, потери электрической мощности в тепловом эквиваленте и т.д.

Вы можете спросить, а как перевести Джоули в Ватты и это довольно частый вопрос в интернете. Хотя вопрос несколько неверный, читая далее, вы поймёте почему. Ответ довольно прост: 1 дж = 0.000278 Ватт*час, в то время, как 1 Ватт*час = 3600 Джоулей. Напомню, что в Ваттах измеряется потребляемая мгновенная мощность, то есть непосредственно используемая пока включена цепь. А Джоуль определяет работу электрического тока, то есть мощность тока за промежуток времени. Помните, в законе Ома я приводил аллегорическую ситуацию. Ток – деньги, напряжение – магазин, сопротивление – чувство меры и денег, мощность – количество продуктов, которые вы сможете на себе унести (увезти) за один раз, а вот как далеко, как быстро и сколько раз вы сможете их увезти – это работа. То есть, сравнить работу и мощность никак не получается, но можно выразить в более понятных нам единицам: Ваттах и часах.

Думаю, что теперь вам не составит труда применить закон Джоуля-Ленца в практике и теории, если таковое потребуется и даже сделать перевод Джоулей в Ватты и наоборот. А благодаря пониманию, что закон Джоуля-Ленца это произведение электрической мощности на время, вы сможете более легко его запомнить и даже, если вдруг забыли основную формулу, то помня всего лишь закон Ома можно снова получить закон Джоуля-Ленца. А я на этом с вами прощаюсь.

Включайся в дискуссию
Читайте также
О путях разрешения межнациональных конфликтов Причины межнациональных конфликтов и пути их решения
В каких единицах измеряется вязкость?
Око планеты информационно-аналитический портал Температура воды в природе