Подпишись и читай
самые интересные
статьи первым!

Определение координаты точки касания шара с плоскостью. Касательная плоскость к сфере

ОПРЕДЕЛЕНИЕ . Касательной плоскостью к поверхности в точке
называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.Нормалью называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Покажем, что
направлен по нормали к поверхности
в точке
­.

Рассмотрим кривую , лежащую на поверхности и проходящую через точку
(рис. 15). Пусть она задана параметрическими уравнениями

.

Если
– радиус-вектор точки
, движущейся при изменениивдоль, то, а
– радиус-вектор точки
.

Так как лежит на поверхности, то. Продифференцируем это тождество по:

. (6.6)

По определению
, а. Поэтому (6.6) означает, что скалярное произведение
во всех точках кривой.

Равенство нулю скалярного произведения векторов – необходимое и достаточное условие их перпендикулярности. Значит, в точке

. Но вектор
– вектор скорости – направлен по касательной к траектории точки

, то есть по касательной к кривой(рис. 15). Так каквыбрана произвольно, то
перпендикулярен всевозможным касательным, проведенным к линиям, лежащим на
и проходящим через точку
. А это по определению означает, что
перпендикулярен касательной плоскости, то есть является ее нормалью.

Отсюда уравнение касательной плоскости к данной поверхности имеет вид (см. гл. 3):

Уравнение нормали (см. гл. 3):

. (6.8)

В частности, если поверхность задана явным уравнением
, получим:– уравнение касательной

плоскости, и
– уравнение нормали.

ПРИМЕР . Написать уравнения касательной плоскости и нормали к сфере
в точке
.

Очевидно

Уравнение касательной плоскости (6.7):

Уравнения нормали (6.8):

.

Заметим, что эта прямая проходит через начало координат, то есть центр сферы.

ПРИМЕР . Написать уравнение касательной плоскости к эллиптическому параболоиду
в точке
.

Эта поверхность задана явным уравнением и
.

Поэтому уравнение касательной плоскости в данной точке имеет вид: или.

Экстремумы функции двух переменных

Пусть функция
определена во всех точках некоторой области
.

ОПРЕДЕЛЕНИЕ . Точка
называется точкой максимума (минимума) функции
, если существует её окрестность
, всюду в пределах которой.

Из определения следует, что если
– точка максимума, то

; если
– точка минимума, то

ТЕОРЕМА (необходимое условие экстремума дифференцируемой функции двух переменных). Пусть функция
имеет в точке
экстремум. Если в этой точке существуют производные первого порядка, то

ДОКАЗАТЕЛЬСТВО . Зафиксируем значение
. Тогда
– функция одной переменной. Она имеет экстремум при
и по необходимому условию экстремума дифференцируемой функции одной переменной (см. гл. 5)
.

Аналогично, зафиксировав значение
, получим, что
.

Что и требовалось доказать.

ОПРЕДЕЛЕНИЕ . Стационарной точкой функции
называется точка
, в которой обе частные производные первого порядка равны нулю:

.

ЗАМЕЧАНИЕ 1 . Сформулированное необходимое условие не является достаточным условием экстремума.

Пусть
. Значит,
– стационарная точка этой функции. Рассмотрим произвольную- окрестность начала координат.

В пределах этой окрестности имеет, очевидно, разные знаки (рис. 16). А это означает, что точка
точкой экстремума по определению не является.

Таким образом, не всякая стационарная точка – точка экстремума .

ЗАМЕЧАНИЕ 2 . Непрерывная функция может иметь экстремум, но не иметь стационарной точки.

Рассмотрим функцию
. Её графиком является верхняя
половина конуса, и, очевидно,
– точка минимума (рис. 17).

ОПРЕДЕЛЕНИЕ . Точки, в которых частные производные первого порядка функции
равны нулю или не существуют, называются еекритическими точками.

ТЕОРЕМА (достаточное условие экстремума функции
). Пусть функция
имеет частные производные второго порядка в некоторой окрестностистационарной точки
. Пусть, кроме того,

.

Тогда, если

1)
, то
– точка экстремума, именно: точка максимума, если
, или точка минимума, если
;

2)
, то экстремума в точке
нет;

3)
, то требуются дополнительные исследования для выяснения характера точки
.

(Без доказательства).

ПРИМЕР . Исследовать на экстремум функцию
.

Найдем стационарные точки:
. Стационарных точек нет, значит, функция не имеет экстремума.

ПРИМЕР . Исследовать на экстремум функцию .

Чтобы найти стационарные точки, надо решить систему уравнений:

То есть данная функция имеет четыре стационарные точки.

Проверим достаточное условие экстремума для каждой из них:

.

Так как
, то в точках
экстремума нет.

и
, значит,
– точка минимума и
;
и
, значит,
– точка максимума и
.

Сказка о возникновении шара

Однажды, оставшись один дома, красавец Полукруг долго принаряживался и жеманился перед небольшим в оловянных рамках зеркалом и не мог налюбоваться собою.

«Что людям вздумалось расславлять, будто я хорош?- говорил он. – Лгут люди, я совсем не хорош. Почему девушки провозгласили, что лучшего парня и не было еще никогда и не будет никогда на селе Хатанга?».

Полукруг знал и слышал все, что про него говорили, и был капризным, как красавец. Он мог целый день любоваться собой перед зеркалом, рассматривая себя со всех сторон. И вдруг случилось чудо, когда Полукруг повернулся перед зеркалом вокруг себя, он увидел в зеркале собственное отражение в форме Шара.

Из истории возникновения

Шаром принято называть тело, ограниченное сферой, то есть шар и сфера – это разные геометрические тела. Однако оба слова «шар» и «сфера» происходят от одного и того же греческого слова «сфайра» - мяч. При этом слово «шар» образовалось от перехода согласных сф в ш .

В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы.

Сфера всегда широко применялось в различных областях науки и техники.

Определение

  • Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.
  • Тело, ограниченное сферой, называется шаром.

Общие понятия

  • Данная точка называется центром сферы, а данное расстояние – радиусом сферы.
  • Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы.
  • Центр, радиус, диаметр сферы называется также центром, радиусом и диаметром шара.

Касательная плоскость к сфере

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Сечение шара плоскостью

  • Любое сечение шара плоскостью есть круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Сечение, проходящее через центр шара, - большой круг. (диаметральное сечение).

Задача на тему шар (д/з)

На поверхности шара даны три точки. Прямолинейные расстояния между ними 6 см, 8 см, 10 см. Радиус шара 13 см. Найдите расстояние от центра до плоскости, проходящей через эти точки. (1.7 см, 2.15 см, 3.12 см, 4.20 см)

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.

Урок 10. Касательная плоскость к сфере.

Цель урока: рассмотреть теоремы о касательной плоскости к сфере, научить решать задачи по данной теме.

Ход урока

      Актуализация опорных знаний.

Повторение сведений из планиметрии.

    Определение касательной.

    Свойство радиуса, проведенного к точке касательной.

    Если из одной точки, лежащей вне окружности, провести к ней две касательные, то:

а) длины отрезков от данной точки до точек касания равны:

б) углы между каждой касательной и секущей, проходящей через центр круга, равны.

    Если из одной точки, лежащей вне окружности, провести к ней касательную и секущую, то квадрат касательной равен произведению секущей на ее внешнюю часть.

    Если две хорды пересекаются в одной точке, то произведение отрезков одной хорды равно произведению отрезков другой.

    Взаимное расположение сферы и плоскости.

      Объяснение новой темы. (Слайд 26 – 32)

Итак, сфера с плоскостью могут пересекаться по окружности, не пересекаться и иметь одну общую точку.

Рассмотрим последний случай подробнее.

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания.

К
асательная плоскость обладает свойством, аналогичным свойству касательной к окружности.

Дано: сфера с центром О и радиусом R , α - касательная к сфере в точке А плоскость.

Доказать: OA а .

Доказательство: Пусть OA не перпендикулярна плоскости а , тогда OA является наклонной к плоскости, значит, расстояние от центра до плоскости d R . Т.е. сфера должна пересекаться с плоскостью по окружности, но это не удовлетворяет условию теоремы. Значит, OA а .

Докажем обратную теорему.

Дано: сфера с центром О и радиусом OA , а, OA а .

Доказать: а – касательная плоскость.

Доказательство: Т.к. OA а , то расстояние от центра сферы до плоскости равно радиусу. Значит, сфера и плоскость имеют одну общую точку. По определению, плоскость является касательной к сфере.

      Формирование умений и навыков учащихся.

    Как далеко может обозревать землю человек, стоящий на равнине? (Не учитывая рефракции света).

Решение: CN 2 = h (h + 2 R ) (см. выше п. I урока)

Пусть рост человека (до глаз) 1,6 м , R земли 6400 км.

Позднее вернемся к этой задаче, чтобы узнать, какова площадь обозрения.

    Работа по таблице 33.


АК ОК (почему?). По теореме Пифагора АК = = 15 . AM - ближайшее расстояние от точки А до сферы (при наличии времени можно дать учащимся порассуждать над очевидным вопросом - почему?)

AM = АО-ОМ=9.

      Итог урока.

      Домашнее задание: п. 61, № 591, 592.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Мы продолжаем знакомство со сферой и её элементами.

На прошлом занятии вы изучили случаи взаимного расположения плоскости и сферы.

Следует помнить, что если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы данной плоскостью является окружностью.

Если расстояние от центра сферы до плоскости больше радиуса сферы, то плоскость и сфера не имеют общих точек.

Если расстояние от центра сферы до плоскости равно радиусу сферы, то плоскость и сфера имеют единственную общую точку.

Рассмотрим подробно случай, когда плоскость и сфера имеют единственную общую точку.

Касательной плоскостью называется плоскость, имеющая со сферой только одну общую точку, данную общую точку называют точкой касания.

Рассмотрим касательную плоскость α к сфере с центром в точке О.

Докажем, что радиус сферы перпендикулярен касательной плоскости α.

1.Проведём доказательство методом от противного, то есть предположим, что радиус ОА не перпендикулярен касательной плоскости α.

2. Следовательно, ОА — наклонная к плоскости α, значит расстояние от центра сферы до плоскости α меньше радиуса ОА.

3. Таким образом, получили — сфера и плоскость α пересекаются по окружности, что является противоречием условию о том, что плоскость α и сфера имеют одну общую точку.

Следовательно, радиус ОА перпендикулярен к плоскости α.

Итак, мы доказали теорему о свойстве касательной плоскости к сфере: радиус сферы, перпендикулярен к касательной плоскости, если он проведён в точку касания плоскости и сферы.

Данное свойство аналогично свойству касательной к окружности.

Докажем обратную теорему.

1.Проведём радиус сферы перпендикулярно к плоскости, проходящей через его конец.

2.Поэтому расстояние от центра сферы до плоскости равно радиусу сферы, значит, плоскость и сфера имеют только одну общую точку, следовательно, данная плоскость является касательной к сфере.

Таким образом, мы доказали, что если радиус сферы перпендикулярен к плоскости, проходящей через его конец, то эта плоскость является касательной к сфере.

Применим полученные знания при решении задач.

Радиус сферы равен 112 см. Точка, лежащая на плоскости касательной к сфере, удалена от точки касания на 15 см. Найти расстояние от этой точки до ближайшей к ней точки сферы.

1)Докажем, что точка А принадлежащая отрезку ОР, будет ближайшей к точке Р.

Выберем произвольную точку N на сфере.

Проведём отрезки NO и NP.

Из неравенства треугольника ONP следует:

ОА+АР=ОР, тогда

ON+NP OA+AP, где ON и OA это радиусы.

Следовательно, R+ NP R+АР или NP АР.

Итак, АР NP, а так как точка N выбрана произвольно, то точка А, принадлежащая отрезку ОР, будет ближайшей к точке Р.

2.Найдём длину искомого отрезка АР как разность отрезков ОР и ОА, где ОА радиус сферы R.

По известной теореме радиус сферы, перпендикулярен к касательной плоскости, если он проведён в точку касания плоскости и сферы, имеем, что треугольник ОКР — прямоугольный.

Отрезок ОР является гипотенузой данного треугольника, найдём его по теореме Пифагора:

ОР=√ОК2+КР2=√1122+152=√12544+225=√12769=113 см

Итак, АР=ОР-ОА=113-112=1 см.

Таким образом, расстояние от точки, лежащей на плоскости касательной, к сфере до ближайшей к ней точки сферы равно 1 см.

Включайся в дискуссию
Читайте также
Шейные позвонки человека и жирафа
Из скольких позвонков состоит шейный отдел жирафа
Упражнения по чтению гласных в четырех типах слога