Подпишись и читай
самые интересные
статьи первым!

Корни натуральной степени из числа примеры. Арифметический квадратный корень и его свойства

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Данная статья представляет собой совокупность детальной информации, которая касается темы свойства корней. Рассматривая тему, мы начнем со свойств, изучим все формулировки и приведем доказательства. Для закрепления темы мы рассмотрим свойства n -ой степени.

Yandex.RTB R-A-339285-1

Свойства корней

Мы поговорим о свойствах .

  1. Свойство умноженных чисел a и b , которое представляется как равенство a · b = a · b . Его можно представить в виде множителей, положительных или равных нулю a 1 , a 2 , … , a k как a 1 · a 2 · … · a k = a 1 · a 2 · … · a k ;
  2. из частного a: b =   a: b , a ≥ 0 , b > 0 , он также может записываться в таком виде a b = a b ;
  3. Свойство из степени числа a с четным показателем a 2 · m = a m при любом числе a , например, свойство из квадрата числа a 2 = a .

В любом из представленных уравнений можно поменять части до и после знака тире местами, например, равенство a · b = a · b трансформируется как a · b = a · b . Свойства для равенства часто используются для упрощения сложных уравнений.

Доказательство первых свойств основано на определении квадратного корня и свойствах степеней с натуральным показателем. Чтобы обосновать третье свойство, необходимо обратиться к определению модуля числа.

Первым делом, необходимо доказать свойства квадратного корня a · b = a · b . Согласно определению, необходимо рассмотреть, что a · b - число, положительное или равное нулю, которое будет равно a · b при возведении в квадрат. Значение выражения a · b положительно или равно нулю как произведение неотрицательных чисел. Свойство степени умноженных чисел позволяет представить равенство в виде (a · b) 2 = a 2 · b 2 . По определению квадратного корня a 2 = a и b 2 = b , то a · b = a 2 · b 2 = a · b .

Аналогичным способом можно доказать, что из произведения k множителей a 1 , a 2 , … , a k будет равняться произведению квадратных корней из этих множителей. Действительно, a 1 · a 2 · … · a k 2 = a 1 2 · a 2 2 · … · a k 2 = a 1 · a 2 · … · a k .

Из этого равенства следует, что a 1 · a 2 · … · a k = a 1 · a 2 · … · a k .

Рассмотрим несколько примеров для закрепления темы.

Пример 1

3 · 5 2 5 = 3 · 5 2 5 , 4 , 2 · 13 1 2 = 4 , 2 · 13 1 2 и 2 , 7 · 4 · 12 17 · 0 , 2 (1) = 2 , 7 · 4 · 12 17 · 0 , 2 (1) .

Необходимо доказать свойство арифметического квадратного корня из частного: a: b = a: b , a ≥ 0 , b > 0 . Свойство позволяет записать равенство a: b 2 = a 2: b 2 , а a 2: b 2 = a: b , при этом a: b является положительным числом или равно нулю. Данное выражение и станет доказательством.

Например, 0: 16 = 0: 16 , 80: 5 = 80: 5 и 3 0 , 121 = 3 0 , 121 .

Рассмотрим свойство квадратного корня из квадрата числа. Его можно записать в виде равенствакак a 2 = a Чтобы доказать данное свойство, необходимо подробно рассмотреть несколько равенств при a ≥ 0 и при a < 0 .

Очевидно, что при a ≥ 0 справедливо равенство a 2 = a . При a < 0 будет верно равенство a 2 = - a . На самом деле, в этом случае − a > 0 и (− a) 2 = a 2 . Можно сделать вывод, a 2 = a , a ≥ 0 - a , a < 0 = a . Именно это и требовалось доказать.

Рассмотрим несколько примеров.

Пример 2

5 2 = 5 = 5 и - 0 , 36 2 = - 0 , 36 = 0 , 36 .

Доказанное свойство поможет дать обоснование a 2 · m = a m , где a – действительное, а m –натуральное число. Действительно, свойство возведения степени позволяет заменить степень a 2 · m выражением (a m) 2 , тогда a 2 · m = (a m) 2 = a m .

Пример 3

3 8 = 3 4 = 3 4 и (- 8 , 3) 14 = - 8 , 3 7 = (8 , 3) 7 .

Свойства корня n-ой степени

Для начала необходимо рассмотреть основные свойства корней n -ой степени:

  1. Свойство из произведения чисел a и b , которые положительны или равны нулю, можно выразить в качестве равенства a · b n = a n · b n , данное свойство справедливо для произведения k чисел a 1 , a 2 , … , a k как a 1 · a 2 · … · a k n = a 1 n · a 2 n · … · a k n ;
  2. из дробного числа обладает свойством a b n = a n b n , где a – любое действительное число, которое положительно или равно нулю, а b – положительное действительное число;
  3. При любом a и четных показателях n = 2 · m справедливо a 2 · m 2 · m = a , а при нечетных n = 2 · m − 1 выполняется равенство a 2 · m - 1 2 · m - 1 = a .
  4. Свойство извлечения из a m n = a n · m , где a – любое число, положительное или равное нулю, n и m натуральные числа, это свойство также может быть представлено в виде. . . a n k n 2 n 1 = a n 1 · n 2 . . . · n k ;
  5. Для любого неотрицательного a и произвольных n и m , которые являются натуральными, также можно определить справедливое равенство a m n · m = a n ;
  6. Свойство степени n из степени числа a , которое положительно или равно нулю, в натуральной степени m , определяемое равенством a m n = a n m ;
  7. Свойство сравнения, которые обладают одинаковыми показателями: для любых положительных чисел a и b таких, что a < b , выполняется неравенство a n < b n ;
  8. Свойство сравнения, которые обладают одинаковыми числами под корнем: если m и n – натуральные числа, что m > n , тогда при 0 < a < 1 справедливо неравенство a m > a n , а при a > 1 выполняется a m < a n .

Равенства, приведенные выше, являются справедливыми, если части до и после знака равно поменять местами. Они могут быть использованы и в таком виде. Это зачастую применяется во время упрощения или преобразовании выражений.

Доказательство приведенных выше свойств корня основывается на определении, свойствах степени и определении модуля числа. Данные свойства необходимо доказать. Но все по порядку.

  1. Первым делом докажем свойства корня n -ой степени из произведения a · b n = a n · b n . Для a и b , которые являются положительными или равными нулю, значение a n · b n также положительно или равно нулю, так как является следствием умножения неотрицательных чисел. Свойство произведения в натуральной степени позволяет записать равенство a n · b n n = a n n · b n n . По определению корня n -ой степени a n n = a и b n n = b , следовательно, a n · b n n = a · b . Полученное равенство – именно то, что и требовалось доказать.

Аналогично доказывается это свойство для произведения k множителей: для неотрицательных чисел a 1 , a 2 , … , a n выполняется a 1 n · a 2 n · … · a k n ≥ 0 .

Приведем примеры использования свойства корня n -ой степени из произведения: 5 · 2 1 2 7 = 5 7 · 2 1 2 7 и 8 , 3 4 · 17 , (21) 4 · 3 4 · 5 7 4 = 8 , 3 · 17 , (21) · 3 · 5 7 4 .

  1. Докажем свойство корня из частного a b n = a n b n . При a ≥ 0 и b > 0 выполняется условие a n b n ≥ 0 , а a n b n n = a n n b n n = a b .

Покажем примеры:

Пример 4

8 27 3 = 8 3 27 3 и 2 , 3 10: 2 3 10 = 2 , 3: 2 3 10 .

  1. Для следующего шага необходимо доказать свойства n -ой степени из числа в степени n . Представим это в виде равенства a 2 · m 2 · m = a и a 2 · m - 1 2 · m - 1 = a для любого действительного a и натурального m . При a ≥ 0 получаем a = a и a 2 · m = a 2 · m , что доказывает равенство a 2 · m 2 · m = a , а равенство a 2 · m - 1 2 · m - 1 = a очевидно. При a < 0 получаем соответственно a = - a и a 2 · m = (- a) 2 · m = a 2 · m . Последняя трансформация числа справедлива согласно свойству степени. Именно это доказывает равенство a 2 · m 2 · m = a , а a 2 · m - 1 2 · m - 1 = a будет справедливо, так как за нечетной степени рассматривается - c 2 · m - 1 = - c 2 · m - 1 для любого числа c , положительного или равного нулю.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько примеров с использованием свойства:

Пример 5

7 4 4 = 7 = 7 , (- 5) 12 12 = - 5 = 5 , 0 8 8 = 0 = 0 , 6 3 3 = 6 и (- 3 , 39) 5 5 = - 3 , 39 .

  1. Докажем следующее равенство a m n = a n · m . Для этого необходимо поменять числа до знака равно и после него местами a n · m = a m n . Это будет означать верная запись. Для a , которое является положительным или равно нулю, из вида a m n является числом положительным или равным нулю. Обратимся к свойству возведения степени в степень и определению. С их помощью можно преобразовать равенства в виде a m n n · m = a m n n m = a m m = a . Этим доказано рассматриваемое свойство корня из корня.

Аналогично доказываются и другие свойства. Действительно, . . . a n k n 2 n 1 n 1 · n 2 · . . . · n k = . . . a n k n 3 n 2 n 2 · n 3 · . . . · n k = . . . a n k n 4 n 3 n 3 · n 4 · . . . · n k = . . . = a n k n k = a .

Например, 7 3 5 = 7 5 · 3 и 0 , 0009 6 = 0 , 0009 2 · 2 · 6 = 0 , 0009 24 .

  1. Докажем следующее свойство a m n · m = a n . Для этого необходимо показать, что a n – число, положительное или равное нулю. При возведении в степень n · m равно a m . Если число a является положительным или равным нулю, то n -ой степени из числа a является числом положительным или равным нулю При этом a n · m n = a n n m , что и требовалось доказать.

Для того, чтобы закрепить полученные знания, рассмотрим несколько примеров

  1. Докажем следующее свойство – свойство корня из степени вида a m n = a n m . Очевидно, что при a ≥ 0 степень a n m является неотрицательным числом. Более того, ее n -ая степень равна a m , действительно, a n m n = a n m · n = a n n m = a m . Этим и доказано рассматриваемое свойство степени.

Например, 2 3 5 3 = 2 3 3 5 .

  1. Необходимо доказательство, что для любых положительных чисел a и b выполнено условие a < b . Рассмотрим неравенство a n < b n . Воспользуемся методом от противного a n ≥ b n . Тогда, согласно свойству, о котором говорилось выше, неравенство считается верным a n n ≥ b n n , то есть, a ≥ b . Но это не соответствует условию a < b . Следовательно, a n < b n при a < b .

Для примера приведем 12 4 < 15 2 3 4 .

  1. Рассмотрим свойство корня n -ой степени. Необходимо для начала рассмотреть первую часть неравенства. При m > n и 0 < a < 1 справедливо a m > a n . Предположим, что a m ≤ a n . Свойства позволят упростить выражение до a n m · n ≤ a m m · n . Тогда, согласно свойствам степени с натуральным показателем, выполняется неравенство a n m · n m · n ≤ a m m · n m · n , то есть, a n ≤ a m . Полученное значение при m > n и 0 < a < 1 не соответствует свойствам, приведенным выше.

Таким же способом можно доказать, что при m > n и a > 1 справедливо условие a m < a n .

Для того, чтобы закрепить приведенные свойства, рассмотрим несколько конкретных примеров. Рассмотрим неравенства, используя конкретные числа.

Пример 6

0 , 7 3 < 0 , 7 5 и 12 > 12 7 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

  • Арифметическим корнем натуральной степени n>=2 из неотрицательного числа а называется некоторое неотрицательное число, при возведении которого в степень n получается число а.

Можно доказать, что для любого неотрицательного а и натурального n уравнение x^n=a будет иметь один единственный неотрицательный корень. Именно этот корень и называют арифметическим корнем n-ой степени из числа а.

Арифметический корень n-ой степени из числа а обозначается следующим образом n√a. Число а в данном случае называется подкоренным выражением.

Арифметический корень второй степени называется квадратным корнем, а арифметический корень третей степени – кубическим корнем.

Основные свойства арифметического корня n-ой степени

  • 1. (n√a)^n = a.

Например, (5√2)^5 = 2.

Это свойство прямо следует из определения арифметического корня n-ой степени .

Если a больше либора равно нулю, b больше нуля и n, m – некоторые натуральные числа такие, что n больше либо равно 2 и m больше либо равно 2, тогда справедливы следующие свойства:

  • 2. n√(a*b)= n√a*n√b.

Например, 4√27 * 4√3 = 4√(27*3) = 4√81 =4√(3^4) = 3.

  • 3. n√(a/b) = (n√a)/(n√b).

Например, 3√(256/625) :3√(4/5) = 3√((256/625) : (4/5)) = (3√(64))/(3√(125)) = 4/5.

  • 4. (n√a)^m = n√(a^m).

Например,7√(5^21) = 7√((5^7)^3)) = (7√(5^7))^3 = 5^3 = 125.

  • 5. m√(n√a) = (n*m) √a.

Например, 3√(4√4096) = 12√4096 = 12√(2^12) = 2.

Заметим, что в свойстве 2, число b может быть равным нулю, а в свойстве 4 число m может быть любым целым, при условии, что a>0.

Доказательство второго свойства

Все последние четыре свойства доказываются аналогично, поэтому ограничимся доказательством только второго: n√(a*b)= n√a*n√b.

Используя определение арифметического корня докажем что n√(a*b)= n√a*n√b.

Для этого докажем два факта, что n√a*n√b. Больше либо равен нулю, и что (n√a*n√b.)^n = ab.

  • 1. n√a*n√b больше либо равно нулю, так как и а и b больше либо равны нулю.
  • 2. (n√a*n√b)^n = a*b, так как (n√a*n√b)^n = (n√a)^n *(n√b)^n = a*b.

Что и требовалось доказать. Значит свойство верно. Эти свойства очень часто придется использовать при упрощении выражений содержащих арифметические корни.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Давай попробуем разобраться, что это за понятие такое «корень» и «с чем его едят». Для этого рассмотрим примеры, с которыми ты уже сталкивался на уроках (ну, или тебе с этим только предстоит столкнуться).

К примеру, перед нами уравнение. Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом? Вспомнив таблицу умножения, ты легко дашь ответ: и (ведь при перемножении двух отрицательных чисел получается число положительное)! Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ.

Дадим определение арифметическому квадратному корню.

А почему же число должно быть обязательно неотрицательным? Например, чему равен. Так-так, попробуем подобрать. Может, три? Проверим: , а не. Может, ? Опять же, проверяем: . Ну что же, не подбирается? Это и следовало ожидать - потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!
Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

Однако самые внимательные уже наверняка заметили, что в определении сказано, что решение квадратного корня из «числа называется такое неотрицательное число, квадрат которого равен ». Кто-то из вас скажет, что в самом начале мы разбирали пример, подбирали числа, которые можно возвести в квадрат и получить при этом, ответ было и, а тут говорится про какое-то «неотрицательное число»! Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа. К примеру, не равносильно выражению.

Из следует, что, то есть или. (Читай тему « »)

А из следует, что.

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат. В наше квадратное уравнение подходит как, так и.

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат .

А теперь попробуй решить такое уравнение. Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит? Начнем с самого начала - с нуля: - не подходит, двигаемся дальше - меньше трех, тоже отметаем, а что если. Проверим: - тоже не подходит, т.к. это больше трех. С отрицательными числами получится такая же история. И что же теперь делать? Неужели перебор нам ничего не дал? Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между и, а также между и. Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными. И что дальше? Давай построим график функции и отметим на нем решения.

Давай попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из, делов-то! Ой-ой-ой, выходит, что. Такое число никогда не кончается. Как же такое запомнить, ведь на экзамене калькулятора не будет!? Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. и уже сами по себе ответы. Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Рассмотрим еще один пример для закрепления. Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной км, сколько км тебе предстоит пройти?

Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора: . Таким образом, . Так чему же здесь равно искомое расстояние? Очевидно, что расстояние не может быть отрицательным, получаем, что. Корень из двух приблизительно равен, но, как мы заметили раньше, -уже является полноценным ответом.

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать. Для этого необходимо знать, по меньшей мере, квадраты чисел от до, а также уметь их распознать. К примеру, необходимо знать, что в квадрате равно, а также, наоборот, что - это в квадрате.

Уловил, что такое квадратный корень? Тогда порешай несколько примеров.

Примеры.

Ну как, получилось? Теперь давай посмотрим такие примеры:

Ответы:

Кубический корень

Ну что же, с понятием квадратного корня вроде разобрались, теперь постараемся разобраться, что такое кубический корень и в чем их отличие.

Кубический корень из некоторого числа - это число, куб которого равен. Заметили, тут все гораздо проще? Здесь нет никаких ограничений на возможные значения как значения под знаком кубического корня, так и извлекаемого числа. То есть кубический корень можно извлечь из любого числа: .

Уловили, что такое кубический корень и как его извлекать? Тогда вперед решать примеры.

Примеры.

Ответы:

Корень - ой степени

Ну что ж, мы разобрались с понятиями квадратного и кубического корня. Теперь обобщим полученные знания понятием корень -ой степени .

Корень -ой степени из числа — это число, -ая степень которого равна, т.е.

равносильно.

Если - чётно , то:

  • при отрицательном , выражение не имеет смысла (корни четной -ой степени из отрицательных чисел извлечь нельзя !);
  • при неотрицательном () выражение имеет один неотрицательный корень.

Если - нечётно, то выражение имеет единственный корень при любом.

Не пугайтесь, тут действуют такие же принципы, что и с квадратными и кубическими корнями. То есть принципы, которые мы применяли при рассмотрении квадратных корней, распространяем на все корни четной -ой степени.

А те свойства, которые применяли для кубического корня, распространяются на корни нечетной -ой степени.

Ну что, стало понятней? Давайте разбираться на примерах:

Тут все более ли менее понятно: сначала смотрим - ага, степень - четная, под корнем число положительное, значит наша задача - найти такое число, четвертая степень которого даст нам. Ну, есть предположения? Может, ? Точно, !

Так, степень равна - нечетная, под корнем число отрицательное. Наша задача - найти такое число, при возведении которого в степень получается. Сразу заметить корень довольно затруднительно. Однако можно сразу сузить область поиска, правда? Во-первых, определенно искомое число отрицательно, а во-вторых, можно заметить, что - нечетное, а значит и искомое число - нечетное. Попробуй подобрать корень. Конечно же, и можно смело отметать. Может, ?

Да, это то, что мы искали! Заметь, что для упрощения расчета мы воспользовались свойствами степеней: .

Основные свойства корней

Понятно? Если нет, то рассмотрев примеры, все должно встать на свои места.

Умножение корней

Как умножать корни? На этот вопрос помогает ответить самое простое и базовое свойство:

Начнем с простенького:

Корни из получившихся чисел ровно не извлекаются? Не беда - вот вам такие примеры:

А что, если множителей не два, а больше? То же самое! Формула умножения корней работает с любым количеством множителей:

Что мы можем с ним сделать? Ну конечно, спрятать тройку под корнем, помня при этом, что тройка - корень квадратный из!

Зачем нам это нужно? Да просто, чтобы расширить наши возможности при решении примеров:

Как тебе такое свойство корней? Существенно упрощает жизнь? По мне, так точно! Только надо помнить, что вносить под знак корня четной степени мы можем только положительные числа .

Посмотрим, где это еще может пригодиться. Например, в задаче требуют сравнить два числа:

Что больше:

Сходу и не скажешь. Ну что, воспользуемся разобранным свойством внесения числа под знак корня? Тогда вперед:

Ну и, зная, что чем больше число под знаком корня, тем больше сам корень! Т.е. если, значит, . Отсюда твердо делаем вывод, что. И никто не убедит нас в обратном!

До этого мы вносили множитель под знак корня, а как его вынести? Надо просто разложить его на множители и извлечь то, что извлекается!

Можно было пойти по иному пути и разложить на другие множители:

Неплохо, да? Любой из этих подходов верен, решай как тебе удобно.

Вот, к примеру, такое выражение:

В этом примере степень четная, а если она будет нечетная? Опять же, примени свойства степени и разложи все на множители:

С этим вроде все ясно, а вот как извлечь корень из числа в степени? Вот, к примеру, такое:

Довольно просто, правда? А если степень больше двух? Следуем той же логики, используя свойства степеней:

Ну как, все понятно? Тогда вот такой пример:

Это подводные камни, о них всегда стоит помнить . Это фактически и есть отражение на примерах свойства:

при нечетных:
при четных и:

Понятно? Закрепляй на примерах:

Ага, видим, корень в четной степени, отрицательное число под корнем тоже в четной степени. Ну и то же получается? А вот что:

Вот и все! Теперь вот такие примеры:

Уловил? Тогда вперед решать примеры.

Примеры.

Ответы.

Если получил ответы, то можно со спокойной душой двигаться дальше. Если нет, то давай разберемся в этих примерах:

Посмотрим на два других свойства корней:

Эти свойства обязательно надо разбирать в примерах. Ну что, займемся этим?

Разобрался? Давай закрепим.

Примеры.

Ответы.

КОРНИ И ИХ СВОЙСТВА. СРЕДНИЙ УРОВЕНЬ

Арифметический квадратный корень

Уравнение имеет два решения: и. Это числа, квадрат которых равен.

Рассмотрим уравнение. Решим его графически. Нарисуем график функции и линию на уровне. Точки пересечения этих линий и будут решениями. Видим, что и у этого уравнения два решения - одно положительное, другое отрицательное:

Но в данном случае решения не являются целыми числами. Более того, они не являются рациональными. Для того, чтобы записать эти иррациональные решения, мы вводим специальный символ квадратного корня.

Арифметический квадратный корень — это неотрицательное число, квадрат которого равен. При выражение не определено, т.к. нет такого числа, квадрат которого равен отрицательному числу.

Корень из квадрата: .

Например, . А из следует, что или.

Еще раз обращаю внимание, это очень важно: Квадратный корень - это всегда неотрицательное число: !

Кубический корень из числа — это число, куб которого равен. Кубический корень определен для всех. Его можно извлечь из любого числа: . Как видим, он может принимать и отрицательные значения.

Корень -ой степени из числа — это число, -я степень которого равна, т.е.

Если — чётно, тогда:

  • если, то корень -ой степени из a не определен.
  • если, то неотрицательный корень уравнения называется арифметическим корнем -ой степени из и обозначается.

Если - нечётно, тогда уравнение имеет единственный корень при любом.

Ты заметил, что слева сверху от знака корня мы пишем его степень? Но только не для квадратного корня! Если видишь корень без степени, значит он квадратный (степени).

Примеры.

Основные свойства корней

КОРНИ И ИХ СВОЙСТВА. КОРОТКО О ГЛАВНОМ

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа называется такое неотрицательное число, квадрат которого равен

Свойства корней:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Площадь квадратного участка земли равна 81 дм². Найти его сторону. Предположим, что длина стороны квадрата равна х дециметрам. Тогда площадь участка равна х ² квадратным дециметрам. Так как по условию эта площадь равна 81 дм², то х ² = 81. Длина стороны квадрата — положительное число. Положительным числом, квадрат которого равен 81, является число 9. При решении задачи требовалось найти число х, квадрат которого равен 81, т. е. решить уравнение х ² = 81. Это уравнение имеет два корня: x 1 = 9 и x 2 = — 9, так как 9² = 81 и (- 9)² = 81. Оба числа 9 и — 9 называют квадратными корнями из числа 81.

Заметим, что один из квадратных корней х = 9 является положительным числом. Его называют арифметическим квадратным корнем из числа 81 и обозначают √81, таким образом √81 = 9.

Арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а .

Например, числа 6 и — 6 являются квадратными корнями из числа 36. При этом число 6 является арифметическим квадратным корнем из 36, так как 6 — неотрицательное число и 6² = 36. Число — 6 не является арифметическим корнем.

Арифметический квадратный корень из числа а обозначается так: √а.

Знак называется знаком арифметического квадратного корня; а — называется подкоренным выражением. Выражение √а читается так: арифметический квадратный корень из числа а. Например, √36 = 6, √0 = 0, √0,49 = 0,7. В тех случаях, когда ясно, что речь идет об арифметическом корне, кратко говорят: «корень квадратный из а «.

Действие нахождения квадратного корня из числа называют извлечением квадратного корня. Это действие является обратным к возведению в квадрат.

Возводить в квадрат можно любые числа, но извлекать квадратные корни можно не из любого числа. Например, нельзя извлечь квадратный корень из числа — 4. Если бы такой корень существовал, то, обозначив его буквой х , мы получили бы неверное равенство х² = — 4, так как слева стоит неотрицательное число, а справа отрицательное.

Выражение √а имеет смысл только при а ≥ 0. Определение квадратного корня можно кратко записать так: √а ≥ 0, (√а )² = а . Равенство (√а )² = а справедливо при а ≥ 0. Таким образом, чтобы убедиться в том, что квадратный корень из неотрицательного числа а равен b , т. е. в том, что √а =b , нужно проверить, что выполняются следующие два условия: b ≥ 0, b ² = а.

Квадратный корень из дроби

Вычислим . Заметим, что √25 = 5, √36 = 6, и проверим выполняется ли равенство .

Так как и , то равенство верно. Итак, .

Теорема: Если а ≥ 0 и b > 0, то т. е. корень из дроби равен корню из числителя, деленному на корень из знаменателя. Требуется доказать, что: и .

Так как √а ≥0 и √b > 0, то .

По свойству возведения дроби в степень и определению квадратного корня теорема доказана. Рассмотрим несколько примеров.

Вычислить , по доказанной теореме .

Второй пример: Доказать, что , если а ≤ 0, b < 0. .

Еще примерчик: Вычислить .

.

Преобразование квадратных корней

Вынесение множителя из-под знака корня. Пусть дано выражение . Если а ≥ 0 и b ≥ 0, то по теореме о корне из произведения можно записать:

Такое преобразование называется вынесение множителя из под знака корня. Рассмотрим пример;

Вычислить при х = 2. Непосредственная подстановка х = 2 в подкоренное выражение приводит к сложным вычислениям. Эти вычисления можно упростить, если вначале вынести из-под знака корня множители: . Подставив теперь х = 2, получим:.

Итак, при вынесении множителя из-под знака корня представляют подкоренное выражение в виде произведения, в котором один или несколько множителей являются квадратами неотрицательных чисел. Затем применяют теорему о корне из произведения и извлекают корень из каждого множителя. Рассмотрим пример: Упростить выражение А = √8 + √18 — 4√2 вынося в первых двух слагаемых множители из-под знака корня, получим:. Подчеркнем, что равенство справедливо только при а ≥ 0 и b ≥ 0. если же а < 0, то .

Включайся в дискуссию
Читайте также
Приснился ребенок во сне
Митрополит (Сурожский) Антоний
Шуточный гороскоп о том, как мстят разные знаки зодиака