Подпишись и читай
самые интересные
статьи первым!

Как определить направление заряда. Напряжённость электрического поля и принцип суперпозиции

Уже давно установлено, что электрические заряды не оказывают прямого воздействия друг на друга. В пространстве, окружающем все заряженные тела, наблюдается действие электрического поля. Таким образом, взаимодействие происходит между полями, находящимися вокруг зарядов. Каждое поле имеет определенную силу, с которой оно и воздействует на заряд. Эта способность является основной характеристикой для всех .

Определение параметров электрического поля

Исследование электрического поля, расположенного вокруг заряженного объекта, осуществляется с помощью, так называемого пробного заряда. Как правило, это точечный заряд, величина которого очень незначительна и не может каким-то образом, заметно повлиять на основной, исследуемый заряд.

Для более точного определения количественных параметров электрополя, была установлена специальная величина. Данная силовая характеристика получила наименование в виде напряженности электрического поля.

Напряженность поля представляет собой устойчивую физическую величину. Ее значение равно отношению силы поля, воздействующей на положительный пробный заряд, расположенный в конкретной точке пространства, к величине данного пробного заряда.

Вектор напряженности - основная характеристика

Основной характеристикой напряженности служит вектор напряженности электрического поля. Таким образом, данная характеристика является векторной физической величиной. В любой пространственной точке, вектор напряженности направлен в том же направлении, что и сила, оказывающая воздействие на положительный пробный заряд. Неподвижные заряды, которые не изменяются с течением времени, обладают электростатическим электрическим полем.

В том случае, когда исследуется электрополе, созданное сразу несколькими заряженными телами, его общая сила будет состоять из геометрической суммы сил каждого заряженного тела, воздействующих на пробный заряд.

Следовательно, вектор напряженности электрического поля состоит из общей суммы векторов напряженности всех полей, созданными отдельными зарядами в каждой точке.

Силовые линии электрического поля представляют собой его наглядное графическое изображение. Вектор напряженности в каждой точке направлен в сторону касательной, располагающейся в соотношении с силовыми линиями. Количество силовых линий пропорциональны модулю вектора напряженности электрического поля.

Поток вектора напряженности

Как мы обнаруживаем любую силу или взаимодействие? По результату воздействия. Мы стукнули по мячу у мяча изменилась скорость. Земля притягивает нас мы не можем оттолкнуться ногами и улететь, а всегда приземляемся обратно. К сожалению:)

Так и с электрическим полем недостаточно просто знать, что оно есть, необходимо найти какую-то его характеристику, которая будет описывать результат его воздействия.

Мы знаем, что поле воздействует на заряд. Собственно, мы и можем обнаружить электрическое поле только по его действию на заряд. Соответственно, мы должны ввести величину, характеризующую силу этого воздействия.

Напряженность как характеристика электрического поля

При помещении в постоянное электрическое поле различных зарядов удалось обнаружить, что величина действия на заряд силы всегда прямо пропорциональна величине этого заряда.

По закону Кулона все верно. Ведь поле создается зарядом q_1, следовательно, при неизменной величине заряда q_1, созданное им поле будет действовать на помещенный в него заряд q_2 кулоновской силой, пропорциональной величине заряда q_2.

Поэтому отношение силы действия поля на помешенный в него заряд к этому заряду будет величиной, не зависящей от величины заряда, создающего это поле.

Такую величину можно рассматривать в качестве характеристики поля. Ее назвали напряженностью электрического поля:

где E напряженность электрического поля, F сила, действующая на точечный заряд, q помещенный в поле заряд.

Напряженность поля величина векторная, направлен вектор напряженности в любой точке поля всегда вдоль прямой, соединяющей эту точку и помещенный в поле заряд. Вектор напряженности всегда совпадает по направлению с вектором силы, действующей на заряд.

Принцип суперпозиции полей

Мы знаем, что если на тело действует несколько различных сил, направленных в разные стороны, то результирующая этих сил будет равна их геометрической сумме: F =F_1+F_2+...+F_n.

Направление воздействия этой силы находится по правилу сложения векторов. В случае, когда мы имеем заряд, находящийся в зоне действия нескольких электрических полей, то на него будут действовать несколько сил.

Величина и направление каждой отдельно взятой силы будет зависеть от напряженности каждого поля в отдельности. Результирующая же этих сил, как и в случае с телом, будет равна их геометрической сумме.

Логично предположить, что тогда и результирующая напряженность поля для нашего заряда будет складываться из напряженностей всех полей, присутствующих в этой точке. В этом суть принципа суперпозиции полей.

Этот принцип был подтвержден экспериментально: если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых E_1,E_2,…,E_n, то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей.

В соответствии с теорией близкодействия, взаимодействия между заряженными телами, которые удалены друг от друга, осуществляется посредством полей (электромагнитных), создаваемых этими телами в окружающем их пространстве. Если поля создаются неподвижными частицами (телами), то поле является электростатическим. Если поле не изменяется во времени, то его называют стационарным. Электростатическое поле является стационарным. Это поле -- частный случай электромагнитного поля. Силовой характеристикой электрического поля служит вектор напряженности, который можно определить как:

где $\overrightarrow{F}$- сила, действующая со стороны поля на неподвижный заряд q, который называют иногда «пробным». При этом необходимо, чтобы «пробный» заряд был мал, чтобы не искажал поле, напряженность которого с его помощью измеряют. Из уравнения (1) видно, что напряженность совпадает по направлению с силой, с которой поле действует на единичный положительный «пробный заряд».

Напряженность электростатического поля не зависит от времени. Если напряженность во всех точках поля одинакова, то поле называют однородным. В противном случае поле неоднородно.

Силовые линии

Для графического изображения электростатических полей используют понятие силовых линий.

Определение

Силовыми линиями или линиями напряженности поля, называются линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.

Силовые линии электростатического поля являются разомкнутыми. Они начинаются на положительных зарядах и заканчиваются на отрицательных. Иногда они могут уходить в бесконечность или приходить из бесконечности. Силовые линии поля не пересекаются.

Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:

\[\overrightarrow{E}=\sum\limits^n_{i=1}{{\overrightarrow{E}}_i(2)}.\]

Результирующий вектор напряженности поля может быть найден как векторная сумма напряженностей составляющих его «отдельных» полей. Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}$ -линейная плотность распределения заряда), то интегрирование в (3) проводят по линии. Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma=\frac{dq\ }{dS}$, то интегрируют по поверхности. Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ -- объемная плотность распределения заряда.

Напряженность поля

Напряжённость поля в диэлектрике равна векторной сумме напряженностей полей, которые создают свободные заряды ($\overrightarrow{E_0}$) и связанные заряды ($\overrightarrow{E_p}$):

\[\overrightarrow{E}=\overrightarrow{E_0}+\overrightarrow{E_p}\left(4\right).\]

Очень часто в примерах мы сталкиваемся с тем, что диэлектрик является изотропным. В таком случае, напряжённость поля может быть записана как:

\[\overrightarrow{E}=\frac{\overrightarrow{E_0}}{\varepsilon }\ \left(5\right),\]

где $\varepsilon $- относительная диэлектрическая проницаемость среды в рассматриваемой точке поля. Таким образом, из (5) очевидно, что однородном в изотропном диэлектрике напряженность электрического поля в $\varepsilon $ раз меньше, чем в вакууме.

Напряженность электростатического поля системы точечных зарядов равна:

\[\overrightarrow{E}=\frac{1}{4\pi {\varepsilon }_0}\sum\limits^n_{i=1}{\frac{q_i}{\varepsilon r^3_i}}\overrightarrow{r_i}\ \left(6\right).\]

В системе СГС напряженность поля точечного заряда в вакууме равна:

\[\overrightarrow{E}=\frac{q\overrightarrow{r}}{r^3}\left(7\right).\]

Задание: Заряд равномерно распределен по четверти окружности радиуса R с линейной плотностью $\tau $. Найти напряженность поля в точке (А), которая была бы центром окружности.

Выделим на заряженной части окружности элементарный участок ($dl$), который будет создавать элемент поля в точке А, для него запишем выражение для напряженности (будем использовать систему СГС), в таком случае выражение для $d\overrightarrow{E}$ имеет вид:

Проекция вектора $d\overrightarrow{E}$ на ось OX имеет вид:

\[{dE}_x=dEcos\varphi =\frac{dqcos\varphi }{R^2}\left(1.2\right).\]

Выразим dq через линейную плотность заряда $\tau $:

Используя (1.3) преобразуем (1.2), получим:

\[{dE}_x=\frac{2\pi R\tau dRcos\varphi }{R^2}=\frac{2\pi \tau dRcos\varphi }{R}=\frac{\tau cos\varphi d\varphi }{R}\ \left(1.4\right),\]

где $2\pi dR=d\varphi $.

Найдем полную проекцию $E_x$, интегрированием выражения (1.4) по $d\varphi $, где угол изменяется $0\le \varphi \le 2\pi $.

Займемся проекцией вектора напряженности на ос OY, по аналогии без особых пояснений запишем:

\[{dE}_y=dEsin\varphi =\frac{\tau }{R}sin\varphi d \varphi \ \left(1.6\right).\]

Интегрируем выражение (1.6), угол изменяется $\frac{\pi }{2}\le \varphi \le 0$, получаем:

Найдем модуль вектора напряженности в точке А, используя теорему Пифагора:

Ответ: Напряженность поля в точке (А) равна $E=\frac{\tau }{R}\sqrt{2}.$

Задание: Найдите напряженность электростатического поля равномерно заряженной полусферы, радиус которой равен R. Поверхностная плотность заряда равна $\sigma$.

Выделим на поверхности заряженной сферы элементарный заряд $dq$, который расположен на элементе площади $dS.$ В сферических координатах $dS$ равен:

где $0\le \varphi \le 2\pi ,\ 0\le \theta \le \frac{\pi }{2}.$

Запишем выражение для элементарной напряженности поля точечного заряда в системе СИ:

Проектируем вектор напряженности на ось OX, получим:

\[{dE}_x=\frac{dqcos\theta }{4 \pi \varepsilon_0R^2}\left(2.3\right).\]

Элементарный заряд выразим через поверхностную плотность заряда, получим:

Подставляем (2.4) в (2.3), используем (2.1) интегрируем, получаем:

Легко получить, что $E_Y=0.$

Следовательно, $E=E_x.$

Ответ: Напряженность поля полусферы заряженной по поверхности в ее центре равна $E=\frac{\sigma}{4{\varepsilon }_0}.$

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружающем элект­рические заряды, существует силовое поле . Согласно представлениям современной физики, поле реально существует и наряду с веществом является одной из форм существования материи, посредством которого осуществляются определенные взаимо­действия между макроскопическими телами или частицами, входящими в состав вещества. В данном случае говорят об электрическом поле - поле, посредством которого взаимодействуют электрические заряды. Мы рассматриваем элект­рические поля, которые создаются неподвижными электрическими зарядами и называ­ются электростатическими .

Для обнаружения и опытного исследования электростатического поля используется пробный точечный положительный заряд - такой заряд, который не искажает исследу­емое поле (не вызывает перераспределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, поместить пробный заряд Q 0 , то на него действует сила F , различная в разных точках поля, которая, согласно закону Кулона, пропорци­ональна пробному заряду Q 0 . Поэтому отношение F/Q 0 не зависит от Q 0 и характеризу­ет электростатическое поле в той точке, где пробный заряд находится. Эта величина называется напряженностью и является силовой характеристикой электростатичес­кого поля.

Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:

Напряженность поля точечного заряда в вакууме

Направление вектора Е совпадает с направлением силы, действующей на положитель­ный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи­тельного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду (рис.).

Единица напряженности электростатического по­ля - ньютон на кулон (Н/Кл): 1 Н/Кл - напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл= 1 В/м, где В (вольт) - еди­ница потенциала электростатического поля. Графически электростатическое поле изображают с помощьюлиний напряженности - линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис.).

Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Дляоднородного поля (когда вектор напряженности в любой точке постоянен по величине и направлению) линии напряженности параллельны вектору напряженности. Если поле создается точечным зарядом, то линии напряженности - радиальные прямые, выходящие из заряда, если он положителен (рис.а ), и входя­щие в него, если заряд отрицателен (рис.б ). Вследствие большой наглядности графический способ представления электростатического поля широко применяется в электротехнике.


Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про­водить их с определенной густотой: число линий напряженности, прони­зывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Е. Тогда число линий напряженности, пронизыва­ющих элементарную площадку dS, нормаль n которой образует угол a с вектором Е , равно Е dS cos a = E n dS, где Е п -проекция вектора Е на нормаль n к площадке dS (рис.).

Величина dФ Е =Е n dS=E dS называетсяпотоком вектора напряженности через площадку dS. Здесь dS = dS n - век­тор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Выбор направления вектора n (а следовательно, и dS ) условен, так как его можно направить в любую сторону. Единица потока вектора напряженности электростатического поля - 1 В×м.

Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверх­ность

,

где интеграл берется по замкнутой поверхности S. Поток вектора Е является алгебра­ической величиной: зависит не только от конфигурации поля Е , но и от выбора направления n . Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т. е. нормаль, направленная наружу области, охватыва­емой поверхностью.

К кулоновским силам применим принцип независимости действия сил, т. е. результирующая сила F, дейст­вующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Q i: . F = Q 0 E и F i = Q 0 Е i , где Е-напряженность результирующего поля, а Е i - напряженность поля, создаваемого зарядом Q i . Подставляя это в выражение выше, получаем . Эта формула выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля элект­рического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Согласно принципу суперпозиции, напряженность Е поля диполя в произ­вольной точке , где Е+ и Е– - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.

Силы, действующие на дистанции, иногда называются силами поля. Если зарядить объект, то он создаст электрическое поле – область с изменившимися характеристиками, его окружающую. Произвольный заряд, попавший в зону электрического поля, будет подвергаться действию его сил. На эти силы влияют степень заряженности объекта и дистанция до него.

Png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-210x140..png 726w" sizes="(max-width: 600px) 100vw, 600px">

Измерение напряженности ЭП

Силы и заряды

Допустим, имеется какой-то изначальный электрозаряд Q, создающий электрическое поле. Сила этого поля измеряется электрозарядом, пребывающим в непосредственной близости. Этот электрозаряд именуют тестовым, поскольку он служит в качестве испытательного при определении напряженности и слишком маленький для влияния на создаваемое ЭП.

Контрольный электрозаряд будет именоваться q и обладать каким-то количественным значением. Когда его помещают в электрическое поле, он подвергается действующим притягивающим или отталкивающим силам F.

В качестве формулы напряженности электрического поля, обозначенной латинской буквой E , служит математическая запись:

Сила измеряется в ньютонах (Н), заряд – в кулонах (Кл). Соответственно, для напряженности используется единица – Н/Кл.

Другой часто используемой на практике единицей для однородных ЭП служит В/м. Это следствие формулы:

То есть E зависит от напряжения ЭП (разности потенциалов между двумя его точками) и расстояния.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-9-768x474..jpg 120w, https://elquanta.ru/wp-content/uploads/2018/03/2-9.jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Напряженность ЭП

Зависит ли напряженность от количественного значения электрозаряда? Из формулы можно видеть, что увеличение q влечет уменьшение Е. Но согласно закону Кулона, больший заряд также означает большую электрическую силу. Например, двукратное увеличение электрозаряда вызовет двукратное увеличение F. Следовательно, изменения напряженности не произойдет.

Важно! На напряженность ЭП не влияет количественный показатель испытательного заряда.

Как направлен вектор электрического поля

Для векторной величины обязательно применяется две характеристики: количественное значение и направление. На изначальный заряд действует сила, направленная к нему либо в противоположную сторону. Выбор достоверного направления определяется зарядным знаком. Чтобы разрешить вопрос, в какую сторону направляются линии напряженности, было принято направление силы F, воздействующей на положительный электрозаряд.

Важно! Линии напряженности поля, созданного электрозарядом, направлены от заряда со знаком «плюс» к заряду со знаком «минус». Если вообразить произвольный плюсовой исходный заряд, то линии будут выходить из него во все стороны. Для минусового заряда наблюдается наоборот вхождение силовых линий со всех окружающих сторон.

Наглядное отображение векторных величин ЭП производится посредством силовых линий. Смоделированный образец ЭП может состоять из бесконечного числа линий, которые располагаются по определенным правилам, дающим как можно больше информации о характере ЭП.

Gif?.gif 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-768x576.gif 768w" sizes="(max-width: 600px) 100vw, 600px">

Линии и вектора напряженности ЭП

Правила вычерчивания силовых линий:

  1. Сильнейшим электрическим полем обладают электрозаряды большей величины. На схематическом рисунке это может быть показано увеличением частоты линий;
  2. В областях соединения с поверхностью объекта линии всегда ей перпендикулярны. На поверхности объектов правильной и неправильной формы никогда не существует электрической силы, параллельной ей. При существовании такой силы любой избыточный заряд на поверхности начал бы движение, и возник бы электрический ток внутри объекта, что никогда не бывает в статическом электричестве;
  3. При покидании поверхности объекта сила может менять направление из-за влияния ЭП других зарядов;
  4. Электрические линии не должны пересекаться. Если они пересекаются в какой-то точке пространства, тогда в этом пункте должно существовать два ЭП с собственным индивидуальным направлением. Это невыполнимое условие, так как каждое место ЭП имеет свою напряженность и направление, с ним связанное.

Силовые линии для конденсатора будут идти перпендикулярно пластинам, но у краев приобретать выпуклость. Это свидетельствует о нарушении однородности ЭП.

Учитывая условие о положительном электрозаряде, можно определиться с направлением вектора напряженности электрического поля. Этот вектор направлен в сторону силы, действующей на электрозаряд со знаком «плюс». В ситуациях, когда ЭП создается несколькими электрозарядами, вектор находится как результат геометрического суммирования всех сил, воздействиям которых подвержен испытательный заряд.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-9.jpg 750w" sizes="(max-width: 600px) 100vw, 600px">

Построение результирующего вектора напряженности

В то же время под линиями напряженности электрического поля понимается совокупность линий в зоне действия ЭП, касательными к которым будут в любом произвольном пункте векторы Е.

Если создается ЭП от двух и более зарядов, появляются линии, окружающие их конфигурацию. Такие построения являются громоздкими и выполняются с помощью компьютерной графики. При решении практических задач используется результирующий вектор напряженности электрического поля для заданных точек.

Закон Кулона

Закон Кулона определяет электрическую силу:

F = (K x q x Q)/r², где:

  • F – электрическая сила, направленная по линии между двумя электрозарядами;
  • К – постоянная пропорциональности;
  • q и Q – количественные величины зарядов (Кл);
  • r – дистанция между ними.

Постоянную пропорциональность находят из соотношения:

K = 1/(4π x ε).

Величина постоянной зависит от среды, в которой располагаются заряды (диэлектрическая проницаемость).

Тогда F =1/(4π x ε) х (q x Q)/r² .

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-4.jpg 640w" sizes="(max-width: 600px) 100vw, 600px">

Закон Кулона

Закон действует в природной среде. Для теоретического расчета изначально предполагается, что электрозаряды находятся в свободном пространстве (вакууме). Тогда значение ε = 8,85 х 10(в -12 степени), а K = 1/(4π x ε) = 9 х 10(в 9 степени).

Важно! Формулы, описывающие ситуации, где есть сферическая симметрия (большинство случаев), имеют в своем составе 4π. Если имеется цилиндрическая симметрия, появляется 2π.

Чтобы вычислить модуль напряженности, нужно подставить в формулу для Е математическое выражение закона Кулона:

E = F/q = 1/(4π x ε) х (q x Q)/(r² x q) = 1/(4π x ε) х Q/r²,

где Q – исходный заряд, создающий ЭП.

Чтобы найти напряженность ЭП в конкретной точке, надо разместить в этой точке пробный заряд, определить дистанцию до него и вычислить E по формуле.

Закон обратных квадратов

В формульном отображении закона Кулона дистанция между электрозарядами появляется в уравнении как 1/r². Значит, будет справедливым применение закона обратных квадратов. Другим известным таким законом является закон гравитации Ньютона.

Включайся в дискуссию
Читайте также
Как считать прибыль формула
Роялти по лицензионным договорам
Есть способ спрогнозировать поступление денежных средств на ближайший месяц